Problems of the student contest of the St. Petersburg Mathematical Society, 2010.

Please send solutions in .tex or .pdf to fedyapetrov@gmail.com .

- 1. The plane is partitioned into parabolas (each point belongs to exactly one parabola). Does it follow that their axes have the same direction?
- 2. a) Does there exist an infinite-dimensional separable Banach space X such that any Banach space Y isomorphic to X is linearly isometric to X?
 - b) What about a non-separable space?
- 3. Consider the claim P(k, n): if -1 in some field is a sum of k squares, then it is also a sum of finite number of n-th powers.
 - a) Prove P(1, n) for any n.
 - b) Prove P(k, 4) for any k.
 - c) Is P(k, n) true for all k, n?
- 4. The function f: [0,1] → ℝ satisfies the equation f(x) = f(x/2) + f(x+1/2) for any x ∈ [0,1]. Does it follow that f(x) = c(1-2x) for some real c if
 a) f ∈ C²[0,1]; b) f ∈ C¹[0,1]; c) f ∈ C[0,1]?
- 5. Let p > 3 be a prime number and let a, b be integers such that p divides $a^2 + ab + b^2$. Prove that $(a + b)^p a^p b^p$ is divisible by a) p^2 ; b) p^3 .
- 6. Prove that arbitrary (not necessary countable) union of closed non-degenerated a) segments on the real line; b) triangles on the plane is Lebesgue measurable.
- 7. Prove that for any positive integer *n* there exist a polygon F_0 in the plane and its shifted copies F_1, F_2, \ldots, F_n such that no two of the polygons F_i $(0 \le i \le n)$ have common interior point but F_0 and F_i have at least one common (boundary) point for each $i = 1, 2, \ldots, n$.
- 8. Let S be a sphere and P a point in \mathbb{R}^d . Define the characteristic of a simplex T inscribed in this sphere as
 - a) the volume of T times the sum of squares of the distances from P to the vertices of T;
 - b) the volume of T times the sum of the squares of mutual distances between the vertices of T.

Given a polyhedron inscribed in S, prove that if it is partitioned into simplices inscribed in S, then the sum of their characteristics does not depend on the partitioning α) for d = 2; β) for d = 3; γ) for arbitrary d (thus, there are six questions in this problem, enumerated by the elements of the set $\{a, b\} \times \{\alpha, \beta, \gamma\}$).

9. Consider the topological space \mathbb{R}^{∞} of all real sequences $(x_1, x_2, ...)$ equipped with the product topology. Say that two sequences x, y are equivalent if $x = \lambda y$ for some $\lambda > 0$. Denote by S the space of nonzero equivalence classes equipped with the factor topology (S is, in a sense, an infinite-dimensional sphere). Prove that the space S is

a) a Hausdorff space,

but

b) any continuous function $S \to \mathbb{R}$ is constant.

10. For q > 1, put

$$F(t) = \int_{x_1(t)}^{x_2(t)} \frac{xdx}{\sqrt{1+tx-|x|^q}}$$

where x_1 and x_2 are the roots of the denominator. Clearly, $x_{1,2}(0) = \mp 1$ and F(0) = 0. a) Calculate F'(0).

b) Find all values of q for which F'(0) = 0.

11. For a positive rational x denote by $\ell(x)$ the height of the continued fraction of x (in other words, $\ell(x)$ is the number of steps in the Euclid algorithm for the numerator and the denominator of a fraction x.) So, $\ell(17/5) = 3$, since 17/5 = 3 + 1/(2 + 1/2). Prove that a) for r = 2; b) for any positive rational r, there exist constants $c_1(r), c_2(r)$ such that the inequality $c_1(r) \cdot \ell(x) \leq \ell(rx) \leq c_2(r) \cdot \ell(x)$ holds for any positive rational number x.

Try to get the estimates for $c_1(r)$, $c_2(r)$ in terms of r as sharp as you can.

- 12. Let a graph G (non-directed, without loops and multiple edges) with 3n vertices be given. Assume that for any n+1 vertices of G there exist two of them which are not joined by an edge but the set of vertices of G can be partitioned into three parts so that any two vertices of the same part are joined. Denote by f(n) the minimum number of colors sufficient to properly color such a graph. (Recall that the coloring is called proper if no edge connects the vertices of the same color).
 - a) Prove that f(5) = 8.
 - 6) Prove that $f(n) \leq 8n/5$ for each n.