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Nina Nikolaevna Uraltseva was born on May 24, 1934, in
Leningrad, USSR (currently St. Petersburg, Russia), to par-
ents Nikolai Fedorovich Uraltsev (an engineer) and Lidiya
Ivanovna Zmanovskaya (a school physics teacher). Nina
Uraltseva was attracted to both mathematics and physics
from the early stages of her life.1 She was a student at the
now famous school no. 239, then a school for girls, which
later became specialized in mathematics and physics and
producedmany notable alumni. Together with her friends,
Nina Uraltseva initiated amathematical study group at her
school, under the supervision of Mikhail Birman, then a
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student at the Faculty of Mathematics and Mechanics of
Leningrad State University (LSU). In the higher grades of
the school, she was actively involved in the Mathematical
Circle at the Palace of Young Pioneers, guided by Ilya Bakel-
man, and became a two-time winner of the citywide math-
ematical olympiad.

NinaUraltseva graduated from school in 1951 (with the
highest distinction—a gold medal) and started her study
at the Faculty of Physics of LSU. She was an active partic-
ipant in an (undergraduate) student work group founded
by Olga Aleksandrovna Ladyzhenskaya, that gave her the
opportunity to further deepen her study into the analy-
sis of partial differential equations (PDEs). In 1956, she
graduated from the university and the same year married
Gennady Lvovich Bir (a fellow student at the Faculty of
Physics). The young couple were soon blessed with a son
(and only child) Kolya.2

During her graduate years, Uraltseva continued to be
supervised byOlga Ladyzhenskaya. This mentorship trans-
formed into a lifelong productive collaboration and warm
friendship until 2004, when Olga Ladyzhenskaya passed
away.

2Tragically, Kolya (Nikolai Uraltsev) passed away from a heart attack in 2013
(in Siegen, Germany). He was a renowned nuclear physicist, author of 120
papers published in the world’s top scientific journals, most of them very well
known internationally (with approximately 6000 references), and two of them
are in the category of renowned. Kolya’s son, Gennady Uraltsev, is currently a
postdoctoral fellow at the University of Virginia, working in harmonic analysis.
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Figure 1. Nina Uraltseva in a schoolgirl uniform, Leningrad,
1951.

Nina Uraltseva defended her Candidate of Science3 the-
sis entitled “Regularity of solutions to multidimensional
quasilinear equations and variational problems” in 1960.
Four years later, she became a Doctor of Science4 with a
thesis “Boundary-value problems for quasilinear elliptic
equations and systems of second order.” Since 1959, she
has been a member of the Chair of Mathematical Physics
at the Faculty of Mathematics and Mechanics of LSU (cur-
rently St. Petersburg State University), where she became a
Full Professor in 1968 and served as the head of the chair
since 1974.

For her fundamental contributions to the theory of
partial differential equations in the 1960s, Nina Uralt-
seva (jointly with Olga Ladyzhenskaya) was awarded the
Chebyshev Prize of the Academy of Sciences of the USSR
(1966) as well as one of the highest honors of the USSR,
the USSR State Prize (1969).

Throughout her career, Nina Uraltseva has been an in-
vited speaker at many meetings and conferences, includ-
ing the International Congress of Mathematicians in 1970
and 1986. In 2005, she was chosen as the Lecturer of the
European Mathematical Society.

Nina Uraltseva’s mathematical achievements are highly
regarded throughout the world, and have been acknowl-
edged by various awards, such as the titles of Honorary

3Equivalent of PhD in many countries.
4Equivalent of Habilitation in many European countries.

Scientist of the Russian Federation in 2000, Honorary Pro-
fessor of St. Petersburg State University in 2003, and Hon-
orary Doctor of KTH Royal Institute of Technology, Stock-
holm, Sweden, in 2006. In the same year, in recognition of
her academic record, she received the Alexander von Hum-
boldt Research Award. In 2017, the Government of St. Pe-
tersburg recognized her recent research by its Chebyshev
Award.

Nina Uraltseva’s interests are not limited to scientific
activities only. In her youth, she used to be a very good
basketball player and an active member of the university
basketball team. She enjoyed hiking in the mountains, ca-
noeing, and driving a car. In the 1980s, Nina took part in
five archaeological expeditions in the north of Russia (the
Kola Peninsula and the Kotlas area) and excavated Pale-
olithic ceramics. She is also a passionate lover of classical
music and a regular visitor at philharmonic concerts.

Mathematical Contributions
Nina Uraltseva has made lasting contributions to mathe-
matics with her pioneering work in various directions in
analysis and PDEs and the development of elegant and so-
phisticated analytical techniques. She is most renowned
for her early work on linear and quasilinear equations of
elliptic and parabolic type in collaboration with Olga La-
dyzhenskaya, which is the category of classics, but her con-
tributions to the other areas such as degenerate and geo-
metric equations, variational inequalities, and free bound-
aries are equally deep and significant. Below, we summa-
rize Nina Uraltseva’s work with some details on selected
results.

1. Linear and Quasilinear Equations
1.1. Hilbert’s 19th and 20th problems. The first three
decades of Nina Uraltseva’s mathematical career were de-
voted to the theory of linear and quasilinear PDEs of el-
liptic and parabolic type. Her first round of works in the
1960s, mostly in collaboration with Olga Ladyzhenskaya,
was related to Hilbert’s 19th and 20th problems on the
existence and regularity of the minimizers of the energy
integrals

𝐼(𝑢) = ∫
Ω
𝐹(𝑥, 𝑢, ∇𝑢)𝑑𝑥,

where 𝐹(𝑥, 𝑢, 𝑝) is a smooth function of its arguments and
Ω is a bounded domain in ℝ𝑛, 𝑛 ≥ 2. In her Candidate
of Science thesis, based on work [17],5 Nina Uraltseva has
shown that under the assumption that 𝐹 is 𝐶2,𝛼 and satis-
fies the uniform ellipticity condition

𝐹𝑝𝑖𝑝𝑗𝜉𝑖𝜉𝑗 ≥ 𝑚|𝜉|2, 𝑚 > 0,

5In those years, it was quite unusual to base the Candidate of Science thesis on
just a single paper and some of the committee members voiced their concerns.
However, Olga Ladyzhenskaya objected decisively that it depends on the quality
of the paper.
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Figure 2. Left to right: Nina Uraltseva, Olga Ladyzhenskaya,
and Vladimir Smirnov in a seminar on mathematical physics,
Leningrad, 1968.

the minimizers 𝑢 are 𝐶2,𝛼 locally in Ω (i.e., on compact
subdomains of Ω), provided they are Lipschitz. (It has to
be mentioned here that the Lipschitz regularity of the min-
imizers was known from the earlier works of Ladyzhen-
skaya under natural growth conditions on 𝐹 and its partial
derivatives.) Uraltseva has also shown that 𝐶2,𝛼 regularity
extends up to the boundary 𝜕Ω under the natural require-
ment that both 𝜕Ω and 𝑢|𝜕Ω are 𝐶2,𝛼. This generalized the
results of Morrey in dimension 𝑛 = 2 to higher dimen-
sions.

Uraltseva’s proof was based on a deep extension of the
ideas of De Giorgi for the solutions of uniformly elliptic
equations in divergence form with bounded measurable
coefficients, which were applicable only to the integrands
of the form 𝐹(∇𝑢). In particular, one of the essential steps
was to establish that 𝑣 = ±𝑢𝑥𝑖 , 𝑖 = 1, … , 𝑛, which are as-
sumed to be bounded, satisfy the energy inequalities

∫
𝐴𝑘,𝜌

|∇𝑣|2𝜁2 ≤ 𝐶∫
𝐴𝑘,𝜌

(𝑣 − 𝑘)2|∇𝜁|2 + 𝐶|𝐴𝑘,𝜌| (1)

for all |𝑘| ≤ 𝑀, where 𝐴𝑘,𝜌 is the intersection of {𝑣 > 𝑘}
with the ball 𝐵𝜌(𝑥0) ⋐ Ω, 𝜁 is a cutoff function, and𝑀 is a
bound for max |∇𝑢|.

Using similar ideas, Uraltseva was able to deduce the
existence and regularity of solutions for the class of quasi-
linear uniformly elliptic equations in divergence form,

𝜕𝑥𝑖 (𝑎𝑖(𝑥, 𝑢, ∇𝑢)) + 𝑎(𝑥, 𝑢, ∇𝑢) = 0, (2)

under natural growth conditions on 𝑎𝑖(𝑥, 𝑢, 𝑝), 𝑎 and some
of their partial derivatives, which were mainly needed for
proving the bounds on max |∇𝑢|. These results were fur-
ther refined in the joint works with Olga Ladyzhenskaya in
1961. In [18], Uraltseva extended these results to problems
with Neumann-type boundary conditions as well as to cer-
tain quasilinear diagonal systems (important, e.g., for the
applications in harmonic maps).

Quasilinear uniformly elliptic equations in nondiver-
gence form,

𝑎𝑖𝑗(𝑥, 𝑢, ∇𝑢) 𝑢𝑥𝑖𝑥𝑗 + 𝑎(𝑥, 𝑢, ∇𝑢) = 0, (3)

were trickier to treat, but already in her thesis Uraltseva
found a key: quadratic growth of 𝑎(𝑥, 𝑢, 𝑝) in the 𝑝-
variable,

|𝑎(𝑥, 𝑢, 𝑝)| ≤ 𝜇(1 + |𝑝|)2,
along with the corresponding conditions on the partial
derivatives of 𝑎 and 𝑎𝑖𝑗 in their variables. In [19], Uralt-
seva proved 𝐶1,𝛼 a priori bounds for solutions of (3), as
well as for diagonal systems of similar type.

The results in the elliptic case were further extended to
the parabolic case (including systems) in a series of works
of Ladyzhenskaya and Uraltseva [9].

This extensive research, that went far beyond the origi-
nal scope of Hilbert’s 19th and 20th problems, was sum-
marized in two monographs, Linear and Quasilinear Equa-
tions of Elliptic Type (1964) (substantially enhanced in the
2nd edition in 1973) and Linear and Quasilinear Equa-
tions of Parabolic Type (1967), written in collaboration with
Vsevolod Solonnikov; see Figure 3. The monographs be-
came instant classics and were translated to English [8,12]
and other languages and have been extensively used for
generations of mathematicians working in elliptic and par-
abolic PDEs and remain so to this date.
1.2. Equations with unbounded coefficients. In a se-
ries of papers in 1979–1985, summarized in her talk at
the International Congress of Mathematicians in Berke-
ley, CA, 1986 and a survey paper with Ladyzhenskaya [11],
Uraltseva and collaborators have studied uniformly ellip-
tic quasilinear equations of nondivergence type (3) and
their parabolic counterparts, when 𝑎 and the first deriva-
tives of 𝑎𝑖𝑗 are possibly unbounded. The typical condi-
tions read

|𝑎(𝑥, 𝑢, 𝑝)| ≤ 𝜇|𝑝|2 + 𝑏(𝑥)|𝑝| + Φ(𝑥),
where 𝜇 is a constant and 𝑏, Φ ∈ 𝐿𝑞(Ω), 𝑞 > 𝑛. Uralt-
seva and collaborators were able to establish the existence
and up to the boundary 𝐶1,𝛼 regularity of 𝑊 2,𝑛 strong so-
lutions of the problem, vanishing on 𝜕Ω (provided the lat-
ter is sufficiently regular). The proofs were based on the
extension of methods of Ladyzhenskaya and Uraltseva al-
ready in their books [8,12], as well as those of Krylov and
Safonov using the Aleksandrov-Bakelman-Pucci (ABP) es-
timate, in the elliptic case, and a parabolic version of the
ABP estimate due to Nazarov and Uraltseva (1985), in the
parabolic case.

Most recent results of Nina Uraltseva in this direction
are in the joint work with Alexander Nazarov [13] on the
linear equations in divergence form,

𝜕𝑥𝑖 (𝑎𝑖𝑗(𝑥)𝑢𝑥𝑗 ) + 𝑏𝑖(𝑥)𝑢𝑥𝑖 = 0 in Ω,
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Figure 3. The famous books: the iconic green Russian editions
of the elliptic (2nd ed., 1973) and parabolic (1967) versions of
Uraltseva’s books with Ladyzhenskaya and Solonnikov.

and their parabolic counterparts. Their goal was to find
conditions on the lower-order coefficients 𝐛 = (𝑏1, … , 𝑏𝑛)
that guarantee the validity of classical results such as the
strong maximum principle, Harnack’s inequality, and Li-
ouville’s theorem. It was shown by Trudinger (1973) that
such results hold when 𝐛 ∈ 𝐿𝑞, 𝑞 > 𝑛. Motivated by
applications in fluid dynamics, in one of their theorems
Nazarov and Uraltseva showed that under the additional
assumption

div 𝐛 = 0, (4)

the condition on 𝐛 can be relaxed to being in the Morrey
space

sup
𝐵𝑟(𝑥0)⊂Ω

𝑟𝑞−𝑛∫
𝐵𝑟(𝑥0)

|𝐛|𝑞 < ∞

for some 𝑛/2 < 𝑞 ≤ 𝑛. In the borderline case 𝑞 = 𝑛, the
Morrey space above is locally the same as 𝐿𝑛. Remarkably,
in that case the divergence-free condition (4) on 𝐛 can be
dropped when 𝑛 ≥ 3, i.e., 𝐛 ∈ 𝐿𝑛loc alone is sufficient to
have the classical theorems; moreover, this result is op-
timal. In dimension 𝑛 = 2, to drop (4) one needs the
stronger condition 𝐛 ln1/2(1 + |𝐛|) ∈ 𝐿2loc.

2. Nonuniformly Elliptic and Parabolic Equations
2.1. Degenerate equations. Nina Uraltseva has also
made a pioneering work on the regularity theory for de-
generate quasilinear equations. A particular result in this
direction is her 1968 proof [20] of the 𝐶1,𝛼 regularity of 𝑝-
harmonic functions, 𝑝 > 2, which are the weak solutions
of the 𝑝-Laplace equation

div(|∇𝑢|𝑝−2∇𝑢) = 0 in Ω, (5)

or, equivalently, are the minimizers of the energy func-
tional

∫
Ω
|∇𝑢|𝑝𝑑𝑥.

The difficulty here lies in the fact that the 𝑝-Laplace equa-
tion (5) degenerates at the points where the gradient van-
ishes and that the solutions are not generally twice differ-
entiable in the Sobolev sense. As stated in her paper, this
problem was posed to Nina Uraltseva by Yurii Reshetnyak
in relation with the study of quasiconformal mappings in
higher dimensions.

Uraltseva has obtained the 𝐶1,𝛼 regularity of 𝑝-
harmonic functions as an application of the Hölder reg-
ularity of the solutions of the degenerate quasilinear diag-
onal systems

𝜕𝑥𝑖 (𝑎𝑖𝑗(𝑥, 𝐮) 𝐮𝑥𝑗 ) = 𝟎,

with scalar coefficients 𝑎𝑖𝑗 satisfying the degenerate ellip-
ticity condition

𝜈(|𝐮|)|𝜉|2 ≤ 𝑎𝑖𝑗(𝑥, 𝐮)𝜉𝑖𝜉𝑗 ≤ 𝜇𝜈(|𝐮|)|𝜉|2,

with 𝜇 ≥ 1 and a nonnegative increasing function 𝜈(𝜏) sat-
isfying 𝜈(𝜆𝜏) ≤ 𝜆𝑠𝜈(𝜏) for 𝜆 ≥ 1 and 𝑠 > 0.

Unfortunately, despite the utmost importance of this re-
sult, Nina Uraltseva’s proof remained unknown outside of
the Soviet Union. In 1977, nine years later, it was inde-
pendently reproved by Karen Uhlenbeck. Other proofs
were given by Craig Evans (1982), John Lewis (1983),
who extended the range of exponents to 1 < 𝑝 ≤ 2,
and Di Benedetto (1983) and Tolksdorf (1984), who both
extended it to the case of general degenerate quasilinear
equations in divergence form.

Another work in this area that has gained the status of
classic is the paper of Nina Uraltseva and Anarkul Urdale-
tova [25], where they proved uniform gradient estimates
for bounded solutions of anisotropic degenerate equa-
tions,

𝜕𝑥𝑖 (𝑎𝑖(𝑥, 𝑢𝑥𝑖 )) + 𝑎(𝑥, 𝑢, ∇𝑢) = 0 in Ω,

under ellipticity, growth, and monotonicity conditions on
the coefficients. Their results were applicable to the mini-
mizers of the energy functional

∫
Ω

𝑛
∑
𝑖=1

|𝑢𝑥𝑖 |𝑚𝑖 + 𝑓(𝑥, 𝑢),

with the exponents𝑚1, … ,𝑚𝑛 satisfying𝑚𝑖 > 3, 2𝑚𝑖 > 𝑚0,
𝑖 = 1, … , 𝑛, 𝑚0 = max{𝑚𝑖}, under the monotonicity con-
dition 𝑓 (𝑥, 𝑢) ≥ 0. This was the very first paper to prove
regularity results for degenerate quasilinear equations with
nonstandard growth, which appeared first in the 1980s,
motivated by applications in elasticity and material sci-
ence, and continue to be the subject of extensive research
today. Major contributions in this direction have been
made by Paolo Marcellini and many others.
2.2. Geometric equations. In [10], Ladyzhenskaya and
Uraltseva developed a method of local a priori estimates
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for nonuniformly elliptic and parabolic equations, includ-
ing the equations of minimal surface type,

div ∇𝑢
√1 + |∇𝑢|2

= 𝑎(𝑥, 𝑢, ∇𝑢) in Ω.

A particular case with 𝑎(𝑥, 𝑢, ∇𝑢) = 𝜅𝑢, 𝜅 > 0, together
with the Neumann-type condition 𝜕𝜈𝑢/√1 + |∇𝑢|2 = 𝜘 on
𝜕Ω, |𝜘| < 1, is known as the capillarity problem. The
boundary estimates, as well as the existence of classical
solutions for such problems, were proved by Uraltseva in
[21]. Remarkably, the results in this paper required only
the smoothness of the domain Ω, but not its convexity.

In the 1990s, in a series of joint works with Vladimir
Oliker (see [14] and the references therein), Nina Uralt-
seva studied the evolution of surfaces 𝑆(𝑡) given as graphs
𝑢 = 𝑢(𝑥, 𝑡) over a bounded domainΩ ⊂ ℝ𝑛 with the speed
depending on the mean curvature of 𝑆(𝑡) under the condi-
tion that the boundary of the surface 𝑆(𝑡) is fixed. More
precisely, they considered a parabolic PDE of the type

𝑢𝑡 = √1 + |∇𝑢|2 div ∇𝑢
√1 + |∇𝑢|2

in Ω × (0,∞)

with the boundary condition 𝑢(𝑥, 𝑡) = 𝜙(𝑥) on 𝜕Ω× (0,∞)
and initial condition 𝑢(𝑥, 0) = 𝑢0(𝑥). Even in the station-
ary case, when this problem is the Dirichlet problem for
the mean curvature equation, the existence of up to the
boundary classical solutions requires a geometric condi-
tion on the domain Ω, namely, the nonnegativity of the
mean curvature of 𝜕Ω. For such domains, Huisken (1989)
has shown the existence of the classical solutions of the
evolution problem and proved that the surfaces 𝑆(𝑡) con-
verge to a classical minimal surface 𝑆 as 𝑡 → ∞. Oliker
and Uraltseva have studied this problem with no geomet-
ric conditions on the domain Ω. For this purpose, they
introduced a notion of a generalized solution to the para-
bolic problem (as a limit of regularized problems). They
have proved its existence and convergence 𝑢(⋅, 𝑡) → Φ as
𝑡 → ∞ to a generalized solution Φ of the stationary prob-
lem, in the sense that Φminimizes the area functional

∫
Ω
√1+ |∇𝑢|2 +∫

𝜕Ω
|𝑢 − 𝜙|

among all competitors in 𝑊 1,1(Ω). Such minimizer Φ is
unique, but may differ from the Dirichlet data 𝜙 on the
“bad” part of the boundary where the mean curvature is
negative. The study of the behavior of the minimizer near
the “contact points” on the boundary where Φ|𝜕Ω “de-
taches” from 𝜙 later served as one of Uraltseva’s motiva-
tions for studying the touch between free and fixed bound-
aries; see Section 4.1.

3. Variational Inequalities
Another area in which Nina Uraltseva hasmade significant
contributions is variational inequalities, including varia-
tional problems with convex constraints that often exhibit
a priori unknown sets known as free boundaries. An im-
portant example is the Signorini problem from elasticity,
which describes equilibrium configurations of an elastic
body resting on a rigid frictionless surface.

In a series of papers in the 1970s, as well as in the period
1986–1996, together with Arina Arkhipova, Nina Uralt-
seva studied elliptic and parabolic variational inequalities
with unilateral and bilateral boundary constraints, known
as the boundary obstacle problems, which can be viewed
as scalar versions of the Signorini problem. Ultimately,
these results played a fundamental role in Schumann’s
proof (1989) of the 𝐶1,𝛼 regularity for the solution of the
Signorini problem in the vectorial case.

Below, we give a more detailed description of some of
her most impactful results in this direction.
3.1. Problems with unilateral constraints. Let Ω ⊂ ℝ𝑛,
𝑛 ≥ 2, be a bounded domain with a smooth boundary
and 𝑆 a relatively open nonempty subset of 𝜕Ω. Suppose
we are also given two functions 𝜓, 𝑔 ∈ 𝑊 1,2(Ω) satisfying
𝑔 ≥ 𝜓 on 𝑆 (in the sense of traces). Consider then a closed
convex subset 𝔎 ⊂ 𝑊 1,2(Ω) defined by

𝔎 ≔ {𝑣 ∈ 𝑊 1,2(Ω) ∶ 𝑣 ≥ 𝜓 on 𝑆, 𝑣 = 𝑔 on 𝜕Ω ⧵ 𝑆}.
In other words, 𝔎 consists of functions that need to stay
above 𝜓, called a boundary (or thin) obstacle, on 𝑆 and
equal to 𝑔 on 𝜕Ω ⧵ 𝑆. Then, one wants to find 𝑢 ∈ 𝔎 that
minimizes the generalized Dirichlet energy

𝐽(𝑣) = ∫
Ω
𝑎𝑖𝑗(𝑥)𝑣𝑥𝑗𝑣𝑥𝑖 + 2𝑓(𝑥)𝑢,

where 𝑎𝑖𝑗(𝑥) are uniformly elliptic coefficients and 𝑓 is a
certain function. Equivalently, the minimizer 𝑢 satisfies
the variational inequality

𝑢 ∈ 𝔎, ∫
Ω
𝑎𝑖𝑗(𝑥)𝑢𝑥𝑗 (𝑣 − 𝑢)𝑥𝑖

+ 𝑓(𝑥)(𝑣 − 𝑢) ≥ 0 for any 𝑣 ∈ 𝔎.
In turn, it is equivalent to the boundary value problem

𝜕𝑥𝑖 (𝑎𝑖𝑗(𝑥)𝑢𝑥𝑗 ) = 𝑓(𝑥) in Ω,
𝑢 = 𝑔 on 𝜕Ω ⧵ 𝑆,

𝑢 ≥ 𝜓, 𝜕𝐴𝜈 𝑢 ≥ 0, (𝑢 − 𝜓)𝜕𝐴𝜈 𝑢 = 0 on 𝑆,
to be understood in the appropriate weak sense, where
𝜕𝐴𝜈 𝑢 ≔ 𝑎𝑖𝑗(𝑥)𝜈𝑗𝑢𝑥𝑗 is the conormal derivative of 𝑢 on 𝜕Ω,
with 𝜈 = (𝜈1, … , 𝜈𝑛) being the outward unit normal. The
conditions on 𝑆 are known as the Signorini complemen-
tarity conditions and are remarkable because they imply
that

either 𝑢 = 𝜓 or 𝜕𝐴𝜈 𝑢 = 0 on 𝑆,
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Ω

𝑆

𝑢 > 𝜓
𝜕𝐴𝜈 𝑢 = 0

𝑢 = 𝜓
𝜕𝐴𝜈 𝑢 ≥ 0

Γ

Figure 4. Boundary obstacle problem.

yet the exact sets where the first or the second equality
holds are unknown. The interface Γ between these sets in 𝑆
is called the free boundary (see Figure 4). The study of the
free boundary is one of the main objectives in such prob-
lems (see Section 4 for Uraltseva’s contributions in that
direction), yet the regularity of the solutions 𝑢 is a chal-
lenging problem by itself and is often an important step
towards the study of the free boundary.

One of the theorems of Nina Uraltseva [22] states that
when

𝑎𝑖𝑗 ∈ 𝑊 1,𝑞(Ω),
𝜓 ∈ 𝑊 1,2(Ω) ∩ 𝑊2,𝑞

loc (Ω ∪ 𝑆),
𝑓 ∈ 𝐿𝑞(Ω)

for some 𝑞 > 𝑛, then

𝑢 ∈ 𝐶1,𝛼
loc (Ω ∪ 𝑆),

with a universal exponent 𝛼 ∈ (0, 1). Prior to this result, a
similar conclusion was known only under higher regular-
ity assumptions on the coefficients and the obstacle in the
works of Caffarelli (1979) and Kinderlehrer (1981). The
lower regularity assumptions in Uraltseva’s result, particu-
larly on the obstacle 𝜓, were instrumental in Schumann’s
proof (1989) of the corresponding result in the vectorial
case. The parabolic counterpart of Uraltseva’s theorem,
with similar assumptions on the coefficients and the ob-
stacle, was established later in a joint work of Arkhipova
and Uraltseva [5].

The idea of Uraltseva’s proof is based on an interplay be-
tweenDeGiorgi-type energy inequalities and the Signorini
complementarity condition. Locally, near 𝑥0 ∈ 𝑆, one can
assume that 𝑆 = {𝑥𝑛 = 0} and 𝜓 = 0. First, working with
the regularized problem, one can establish that for any par-
tial derivative 𝑣 = ±𝑢𝑥𝑖 , 𝑖 = 1, … , 𝑛, there holds an energy
inequality (similar to (1) in the unconstrained case)

∫
𝐴𝑘,𝜌

|∇𝑣|2𝜁2 ≤ 𝐶∫
𝐴𝑘,𝜌

(𝑣 − 𝑘)2|∇𝜁|2 + 𝐶0|𝐴𝑘,𝜌|1−2/𝑞

for any 𝑘 > 0, 0 < 𝜌 < 𝜌0, and a cutoff function 𝜁 in 𝐵𝜌(𝑥0),
where 𝐴𝑘,𝜌 = {𝑣 > 𝑘} ∩ 𝐵𝜌(𝑥0) ∩ Ω. Next, one observes
that as a consequence of the Signorini complementarity
conditions, one has

𝑢𝑥𝑖𝑢𝑥𝑛 = 0 on {𝑥𝑛 = 0} ∩ 𝐵𝜌(𝑥0)

for all 𝑖 = 1, … , 𝑛−1 and hence either the normal derivative
𝑣 = 𝑢𝑥𝑛 or all tangential derivatives 𝑣 = 𝑢𝑥𝑖 , 𝑖 = 1, … , 𝑛−1,
vanish at least on half of {𝑥𝑛 = 0} ∩ 𝐵𝜌(𝑥0) (by measure).
This allows one to apply Poincare’s inequality in one of the
steps and obtain a geometric improvement of the Dirichlet
energy for 𝑣 going from radius 𝜌 to 𝜌/2. By iteration, this
gives that either

𝑛−1
∑
𝑖=1

∫
Ω∩𝐵𝜌(𝑥0)

|∇𝑢𝑥𝑖 |2 ≤ 𝐶𝜌𝑛−2+2𝛼 or (6)

∫
Ω∩𝐵𝜌(𝑥0)

|∇𝑢𝑥𝑛 |2 ≤ 𝐶𝜌𝑛−2+2𝛼 (7)

holds, with 𝐶 depending on the distance from 𝑥0 to 𝜕Ω⧵𝑆.
However, using the PDE satisfied by 𝑢, it is easy to see that
(6) implies (7), and hence (7) always holds. From there,
the 𝐶1,𝛼 regularity of 𝑢 follows by standard results for the
solutions of the Neumann problem.
3.2. Diagonal systems. The results described above were
extended by Arkhipova and Uraltseva [7] to the problem
with two obstacles 𝜓− ≤ 𝜓+ on 𝑆, that corresponds to the
constraint set

𝔎 = {𝑣 ∈ 𝑊 1,2(Ω) ∶ 𝜓− ≤ 𝑢 ≤ 𝜓+ on 𝑆,
𝑢 = 𝑔 on 𝜕Ω ⧵ 𝑆}.

While substantial difficulties arise near the set where 𝜓− =
𝜓+, the results are as strong as in the case of a single
obstacle. In their further work, Arkhipova and Uraltseva
studied related problems for quasilinear elliptic systems
with diagonal principal part. To describe their results, let
𝑉 = 𝑊 1,2(Ω;ℝ𝑁) ∩ 𝐿∞(Ω;ℝ𝑁) and

𝔎 = {𝐮 ∈ 𝑉 ∶ 𝐮(𝑥) ∈ 𝐾(𝑥) for every 𝑥 ∈ 𝜕Ω},

where 𝐾(𝑥) are given convex subsets of ℝ𝑁 for every 𝑥 ∈
𝜕Ω. Then consider the variational inequality of the type

𝐮 ∈ 𝔎, ∫
Ω
(𝑎𝑖𝑗(𝑥, 𝐮)𝐮𝑥𝑗 + 𝐛𝑖(𝑥, 𝐮)) (𝐯 − 𝐮)𝑥𝑖
+ 𝐟(𝑥, 𝐮,∇𝐮)(𝐯 − 𝐮) ≥ 𝟎

for any 𝐯 ∈ 𝔎,

where 𝑎𝑖𝑗 are scalar uniformly elliptic coefficients, 𝐛𝑖 and
𝐟 are 𝑁-dimensional vector functions, and 𝐟(𝑥, 𝐮, 𝐩) grows
at most quadratically in 𝐩. We note that the problem with
two obstacles 𝜓− ≤ 𝜓+ on 𝜕Ω fits into this framework with
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𝑁 = 1 and 𝐾(𝑥) = [𝜓−(𝑥), 𝜓+(𝑥)]. Assume now that the
convex sets 𝐾(𝑥) are of the form

𝐾(𝑥) = 𝑇(𝑥)𝐾0 + 𝐠(𝑥),
where 𝐾0 is a convex set in ℝ𝑁 with a nonempty interior
and a smooth (𝐶2) boundary, 𝑇(𝑥) is an orthogonal 𝑁×𝑁
matrix, and 𝐠(𝑥) is an 𝑁-dimensional vector. A theorem
of Arkhipova and Uraltseva [6] then states that when the
entries of 𝑇 and 𝐠 are extended to 𝑊 2,𝑞 functions in Ω,
𝑞 > 𝑛, 𝑎𝑖𝑗(⋅, 𝐮) and 𝐛𝑖(⋅, 𝐮) are in 𝑊 1,𝑞(Ω), uniformly in
𝐮 and have at most linear growth in 𝐮, and 𝐟 has at most
quadratic growth in 𝐩, then

𝐮 ∈ 𝐶1,𝛼
loc (Ω ∪ 𝑆),

provided 𝐮 is Hölder continuous in Ω ∪ 𝑆. The Hölder
continuity assumption on𝐮 can be replaced by a bound on
the oscillation inΩ and a local uniqueness of the solutions,
which is also necessary for the continuity of the solutions
of the nonlinear systems of the type

𝜕𝑥𝑖 (𝑎𝑖𝑗(𝑥, 𝐮)𝐮𝑥𝑗 + 𝐛𝑖(𝑥, 𝐮)) + 𝐟(𝑥, 𝐮,∇𝐮) = 𝟎 in Ω.

For amore complete overview of Uraltseva’s results on vari-
ational inequalities, we refer to her own survey paper [23].

4. Free Boundary Problems
In the last 25 years, Uraltseva’s work has dealt with regu-
larity issues arising in free boundary problems. She has
developed powerful techniques, which have led to prov-
ing the optimal regularity results for solutions and for free
boundaries. She has systematically studied how the free
boundaries approach the fixed boundaries, and has devel-
oped tools to study free boundary problems for weakly
coupled systems, as well as two-phase problems. The grad-
uate textbook Regularity of Free Boundaries in Obstacle-Type
Problems [15], written in collaboration with two of us, con-
tains these and related results.

Some of Uraltseva’s major contributions (results, ap-
proaches) in free boundary problems are addressed below
in more detail.

Π

ΓΓ Δ𝑢 = 1

Ω(𝑢)

𝐵+1

𝑢 = 0
|∇𝑢| = 0

𝑢 = 0
|∇𝑢| = 0

𝑢 = 0
Figure 5. Touch between the free boundary Γ = 𝜕Ω(𝑢) and the
fixed boundary Π in problem (8).

4.1. Touch between free and fixed boundary. In [3]
(joint with one of us) and her follow-up paper [24], Uralt-
seva studied the obstacle problem close to a Dirichlet data,
for smooth boundaries, where she proves that the free
boundary touches the fixed boundary tangentially. The
idea seemed to be inspired by related works with Oliker
(see Section 2.2) and the Dam-problem in filtration.

During the potential theory program at Institute Mittag-
Leffler (1999–2000) she started working on free boundary
problems that originated in potential theory. Specifically,
the harmonic continuation problem in potential theory,
that was strongly tied to the obstacle problem, but with
the lack of having a sign for the solution function. The
simplest way to formulate this problem is as follows:

Δ𝑢 = 𝜒Ω(ᵆ) in 𝐵+1 ,
with Ω(𝑢) ≔ {𝑢 = |∇𝑢| = 0}𝑐,

𝑢 = 0 on Π ∩ 𝐵1,
(8)

where 𝐵+1 = {|𝑥| < 1, 𝑥1 > 0} and Π = {𝑥1 = 0}; see
Figure 5. The question of interest was the behavior of the
free boundary Γ = 𝜕Ω(𝑢) close to the fixed boundary Π.

In [2], and several follow-up papers in the parabolic
regime, she shows that the free boundary Γ is a graph of a
𝐶1-function close to points on Π, where Γ∩𝐵+1 touches Π,
or comes too close to Π.

To prove this, and the related parabolic results, there
was a need for developing new tools and approaches. This
was possible partly due to the availability of monotonic-
ity formulas, such as that of Alt, Caffarelli, and Friedman
(1984). One version of the latter asserts that for contin-
uous subharmonic functions ℎ1, ℎ2 in 𝐵𝑅(𝑥0), satisfying
ℎ1ℎ2 = 0 and ℎ1(𝑥0) = ℎ2(𝑥0) = 0, we have 𝜑(𝑟) ↗ for
0 < 𝑟 < 𝑅, where

𝜑(𝑟) = 𝜙(𝑟, ℎ1, 𝑥0) 𝜙(𝑟, ℎ2, 𝑥0) (9)

with

𝜙(𝑟, ℎ𝑖, 𝑥0) ≔
1
𝑟2 ∫𝐵(𝑥0,𝑟)

|∇ℎ𝑖|2𝑑𝑥
|𝑥 − 𝑥0|𝑛−2 .

One can use themonotonicity of the function𝜑(𝑟) to prove
several important properties for 𝑢 and the free boundary.
Indeed, one first extends 𝑢 to be zero in 𝐵−1 = {|𝑥| <
1, 𝑥1 < 0} and applies the monotonicity formula (9) to
ℎ1 = (𝜕𝑒𝑢)+ and ℎ2 = (𝜕𝑒𝑢)−, where 𝑒 is any vector tangent
to the plane {𝑥1 = 0}. Using the fact that at least one of the
sets {±𝜕𝑒𝑢 > 0} has positive volume density at 𝑥0, we shall
have

𝑐0|∇𝜕𝑒𝑢(𝑥0)|4 = lim
𝑟→0

𝜑(𝑟) ≤ 𝜑(1) ≤ 𝐶0.

Combining this with equation (8) we obtain the bound
for 𝑢𝑥1𝑥1(𝑥0). From here, the uniform 𝐶1,1 regularity for 𝑢
in 𝐵+1/2 follows.

The𝐶1,1 regularity is instrumental for any analysis of the
properties of the free boundary. Indeed, to study the free
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𝑢 < 0

Δ𝑢 = −𝜆−

𝑢 > 0

Δ𝑢 = 𝜆+

𝑢 = 0

𝑥0

Figure 6. Two-phase problem: branch point 𝑥0.

boundary at points where it touches the fixed boundary,
one needs to rescale the solution quadratically, 𝑢𝑟(𝑥) =
𝑢(𝑟𝑥+𝑥0)/𝑟2, which keeps the equation invariant. Indeed,
this scaling and “blow-up”6 brings one to a global setting
of equation (8) in ℝ𝑛

+, where solutions can be classified
(in a rotated system) as one of the following:

(i) 𝑢(𝑥) = 1
2
𝑥21 + 𝑎𝑥1𝑥2 + 𝛼𝑥1 (𝑎 > 0, 𝛼 ∈ ℝ),

(ii) 𝑢(𝑥) = 1
2
((𝑥1 − 𝑎)+)2 (𝑎 > 0).

The proof of the classification of global solutions uses an
array of geometric tools and the monotonicity function
𝜑(𝑟), implying that if {𝑢 = 0} ∩ {𝑥1 > 0} ≠ ∅, then 𝜕𝑒𝑢 ≡ 0
for any direction 𝑒 tangential to Π. The case when this set
is empty is easily handled by Liouville’s theorem.

Once this classification is done, one can argue by indi-
rect methods that the free boundary 𝜕{𝑢 > 0} ∩ {𝑥1 > 0}
approaches the fixed one, at touching points, tangentially,
and that it is a 𝐶1-graph locally, which is optimal in the
sense that (in general) it cannot be 𝐶1,Dini.
4.2. Two-phase obstacle type problems. If one considers
extension of equation (8) into 𝐵1, by an odd reflection,
then one obtains a specific example of a general problem
that is referred to as the two-phase obstacle problem, and
is formulated as

Δ𝑢 = 𝜆+𝜒{ᵆ>0} − 𝜆−𝜒{ᵆ<0} in 𝐵1(0),
where 𝜆± are positive bounded Lipschitz functions. Fig-
ure 6 illustrates this problem.

In [16], Nina Uraltseva (with coauthors) proves that at
any branch point 𝑥0 ∈ 𝜕{𝑢 > 0} ∩ 𝜕{𝑢 < 0} with 𝑢(𝑥0) =
|∇𝑢(𝑥0)| = 0, the free boundaries 𝜕{𝑢 > 0} ∩ 𝐵𝑟0(0) and
𝜕{𝑢 < 0} ∩ 𝐵𝑟0(0) are 𝐶1-surfaces, that touch each other
tangentially at 𝑥0.

The proof of this and several similar results (also in the
parabolic setting) relies heavily on the monotonicity func-
tion 𝜑mentioned above as well as on the balanced energy

6Blow-up refers to lim𝑟→0 𝑢𝑟(𝑥), whenever it exists.

functional

Φ𝑥0(𝑟) ≔ 𝑟−𝑛−2∫
𝐵𝑟(𝑥0)

(|∇𝑢|2 + 𝜆+𝑢+ + 𝜆−𝑢−)

− 2𝑟−𝑛−3∫
𝜕𝐵𝑟(𝑥0)

𝑢2, (10)

which is strictly monotone in 𝑟, unless 𝑢 is homogeneous.
Using these twomonotonicity functionals in combination
with geometric tools brings us to the fact that any global
solution 𝑢0 to the two-phase problem is one-dimensional
and, in a rotated and translated system of coordinates,

𝑢0 =
𝜆+
2 (𝑥+1 )2 −

𝜆−
2 (𝑥−1 )2.

From here one uses a revised form of the so-called direc-
tional monotonicity argument of Luis Caffarelli, that in
this setting boils down to the fact that close to branch
points 𝑥0 one can show that in a suitable cone of directions
𝒞 one has 𝜕𝑒𝑢 ≥ 0 in 𝐵𝑟(𝑥0) for 𝑒 ∈ 𝒞 and 𝑟 universal. This
in particular implies that the free boundaries 𝜕{±𝑢 > 0} are
Lipschitz graphs locally close to branch points.

The approaches here generated further application of
the techniques to problems with hysteresis; see, e.g., [4].
4.3. Free boundaries for weakly coupled systems. In her
work with coauthors [1], Uraltseva considers the following
vectorial energy minimizing functional:

𝐸(𝐮) ≔ ∫
𝐵1
(|∇𝐮|2 + 2|𝐮|) 𝑑𝑥.

Here 𝐵1 is the unit ball in ℝ𝑛 (𝑛 ≥ 1), and we minimize
over the Sobolev space 𝐠 +𝑊1,2

0 (𝐵1; ℝ𝑁) for some smooth
boundary values 𝐠 = (𝑔1, … , 𝑔𝑁). The minimizer(s) are
vector-valued functions 𝐮 = (𝑢1, … , 𝑢𝑁), with components
𝑢𝑖 satisfying

Δ𝑢𝑖 =
𝑢𝑖
|𝐮| , 𝑖 = 1, … , 𝑁.

Since the set {|𝐮| > 0} competes with the Dirichlet en-
ergy, by taking the boundary values small we may obtain
{𝐮 = 𝟎} ≠ ∅, which is in contrast to standard variational
problems. The set 𝜕{|𝐮| > 0} is called the free boundary.
One observes that when 𝑁 = 1 (scalar case) then we fall
back to the two-phase problem.

Simple examples of solutions to this problem are:

(i) 𝑢𝑖 = 𝛼𝑖𝑃(𝑥), with 𝑃(𝑥) ≥ 0, Δ𝑃(𝑥) = 1, and
∑𝑁

𝑖=1 𝛼2𝑖 = 1,

(ii) 𝑢𝑖 =
𝛼𝑖
2
(𝑥+1 )2 +

𝛽𝑖
2
(𝑥−1 )2 (2-phase),

∑𝑁
𝑖=1 𝛼2𝑖 = 1, ∑𝑁

𝑖=1 𝛽2𝑖 = 1,
(iii) 𝑢𝑖 =

𝛼𝑖
2
(𝑥+1 )2 (1-phase),

∑𝑁
𝑖=1 𝛼2𝑖 = 1.
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Figure 7. Nina Uraltseva in 2013.

Using the vectorial version of the monotonicity formula
(10), one can show that 𝐮 has a quadratic growth away
from the free boundary.

The regularity of the free boundary follows through the
homogeneity improvement approach with the so-called
epiperimetric inequality, which is used to show that the
functional

ℳ(𝐯) ≔ ∫
𝐵1(0)

(|∇𝐯|2 + 2|𝐯|) −∫
𝜕𝐵1(0)

|𝐯|2

satisfies

|ℳ(𝐮𝑟1) −ℳ(𝐮𝑟2)| ≤ 𝑐|𝑟2 − 𝑟1|𝛼, 𝛼 > 0,

where 𝐮𝑟 = 𝐮(𝑥0 + 𝑟𝑥)/𝑟2 and 𝑥0 is such that 𝐮𝑟 is close
to the rotated version of a half-space solution of type 𝐡 =
1
2
(𝑥+1 )2𝐞.
This, in particular, gives uniqueness of the blow-ups,

and can be used to show that (in a rotated system of co-
ordinates) there exist 𝛽′ > 0, 𝑟0 > 0, and 𝐶 < ∞ such that

∫
𝜕𝐵1(0)

|𝐮𝑟 − 𝐡| ≤ 𝐶𝑟𝛽′

for every 𝑥0 ∈ ℛ𝐮 and every 𝑟 ≤ 𝑟0,
where ℛ𝐮 is the set of free boundary points whose blow-
ups are half-spaces. This implies that ℛ𝐮 is locally in 𝐵1/2
a 𝐶1,𝛽-surface.

Nina’s Impact
Nina Uraltseva has over 100 publications7 and over 8000
citations in MathSciNet. Her famous book Linear and
Quasilinear Equations of Parabolic Type [8] (joint with La-
dyzhenskaya and Solonnikov) has over 4600 citations,
and the elliptic version of this book [12] (joint with La-
dyzhenskaya) has over 1600 citations in MathSciNet. This
naturally gives a picture of a mathematician with tremen-
dous impact on the field of partial differential equations.
Needless to say that, even though there are many new
books on the topic of PDEs, these books stay equally im-
portant and extremely valuable to many PhD students and
early-career analysts.

Nina Uraltseva has, over the years, contributed to the
mathematical community by serving on many important
committees; e.g., chairing the PDE Panel of the Interna-
tional Congress of Mathematicians in Berlin, Germany,
1998, and the Prize Committee of the European Congress
of Mathematics in Stockholm, Sweden, 2004. She also
served as an expert for research foundations such as the
European Research Council and the Russian Foundation
for Basic Research.

She has been an editor for several journals,8 and has
been a frequent visitor of many universities all over the
world and presented talks at various international confer-
ences and schools. In her role as a world leading expert in
analysis of PDEs she has captured the attention of many
female students in all areas of mathematics, and attracted
them to further pursue research and start a career in math-
ematics. Her motivational talks at many conferences, es-
pecially meetings related to “connection to women,” have
been an important factor in attracting several females to
mathematics.

The instructional aspect of her work and her dedication
to educating PhD students,9 as well as unselfishly being
available to students and colleagues for discussions and
brain-storming of their problems, make her one of the
most prominent and devoted persons in the mathemati-
cal community.

Nina Uraltseva has dedicated her life to mathematics,
and in her scientific journey through the years she has
made many friends all over the world. Her kind person-
ality and utmost politeness on one side and her unbiased
style and open mindedness towards diverse mathematical
problems have made her extremely popular among col-
leagues and students, not only as amathematician but also
as a human being.

7See: https://www.scilag.net/profile/nina-uraltseva.
8Editor in Chief for Proceedings of St. PetersburgMath. Society and Journal
of Problems in Mathematical Analysis; member of the editorial committee
for Algebra and Analysis (translated in St. Petersburg Mathematical Jour-
nal), Vestnik of St. Petersburg State University, Lithuanian Mathematical
Journal.
9Uraltseva has supervised 13 PhD students, four of which have habilitated.
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