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Definition

A system F := ((x ′k)∞k=1, (yk)∞k=1) is an O-frame (operator frame)
for T ∈ L(X ,Y ), if for every x ∈ X the series

∑∞
k=1〈x ′k , x〉yk

converges in Y and

Tx =
∞∑
k=1

〈x ′k , x〉yk , x ∈ X .

Examples. 1. ∆ : l∞ → l1, a diagonal, (δk) ∈ l1. Then
∆x =

∑
δk 〈ek , x〉ek .

2. X has a basis (fk)∞k=1 If T : X →W , then

Tx =
∞∑
k=1

〈f ′k , x〉Tfk , x ∈ X .

3. W has a basis (wk). If T : X →W , then
〈Tx ,w ′k〉 = 〈x ,T ∗w ′k〉, hence Tx =

∑∞
k=1〈T ∗w ′k , x〉wk .

4. If X (or Y ) is separable and has BAP. Every T ∈ L(X ,W ) has
O-frame.
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Ideal property

Proposition

T ∈ L(X ,W ), A ∈ L(W ,V ),B ∈ L(Z ,X ). If T has an O-frame,
then ATB : Z → V has an O-frame.

Corollary

If T ∈ L(X ,W ) factors through a Banach space with a basis, then
T has an O-frame.

Corollary

If T ∈ L(X ,W ) factors through a Banach space with the BAP,
then T has an O-frame.
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Dual situation

One more property:

Proposition

Let F := ((x ′k), (wk)) be an O-frame for T ∈ L(X .W ). Then the
dual system Fd := ((wk), (x ′k)) is a weak∗ O-frame for T ∗, i.e.

T ∗w ′ = w∗- lim
N

N∑
k=1

〈w ′,wk〉x ′k , w ′ ∈W ∗.

Proof. For w ′ ∈W ∗ and x ∈ X we have:

〈Tx ,w ′〉 = 〈
∞∑
k=1

〈x ′k , x〉wk ,w
′〉 = 〈

∞∑
k=1

〈w ′,wk〉x ′k , x〉,

hence T ∗w ′ = w∗- limN
∑N

k=1 x ′k〈w ′,wk〉 (the limit is in the
topology σ(X ∗,X )).
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Dual O-frame

Definition

O-frame ((x ′k), (wk)) for T is shrinking if for every w ′ ∈W ∗ the
norm ||

∑∞
k=n+1 x ′k〈w ′,wk〉|| → 0 as n→∞.

Proposition

Let F := ((x ′k), (wk)) be an O-frame for T ∈ L(X .W ). The dual
system Fd := ((wk), (x ′k)) is an O-frame for T ∗ iff the O-frame F
is shrinking.
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Boundedly complete O-frame

Definition

O-frame ((x ′k), (wk)) for T is boundedly complete if for every
x ′′ ∈ X ∗∗ the series

∑∞
k=1〈x ′′, x ′k〉wk converges in the space W .

Proposition

Let F := ((x ′k), (wk)) be an O-frame for T ∈ L(X .W ). TFAE:
1) O-frame F is boundedly complete;
2) for every x ′′ ∈ X ∗∗, it follows from the boudedness of the
partial sums (

∑N
k=1〈x ′′, x ′k〉wk)∞N=1 the convergence of the series∑∞

k=1〈x ′′, x ′k〉wk in the space W .
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O-frames and weak compactness

Theorem

Let F := ((x ′k), (wk)) be an O-frame for T ∈ L(X .W ). If this
O-frame F is boundedly complete and shrinking, then the operator
T is weakly compact.
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O-frames and basis-factorization

Theorem

Let T ∈ L(X ,W ). TFAE:
1) T has an O-frame;
2) the operator T factors through a Banach space with a basis;
3) T factors through a Banach sequence space with a basis.
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O-frames and basis-factorization: Proof

Proof.

T , O-frame F := ((x ′k), (wk)), wk 6= 0.

∃K > 0 : ∀N ||
∑N

k=1 x ′k ⊗ wk || ≤ K .
t := {a = (ak)∞k=1 : series

∑∞
k=1 akwk converges in W },

|||a|||t := supN ||
∑N

k=1 akwk || (≥ limN ||
∑N

k=1 akwk ||). For

a = (a1, a2, . . . , aN+s , 0, 0, . . . ), |||
∑N

k=1 akek ||| ≤ |||
∑N+s

k=1 akek |||
and the linear span of (ek)∞k=1 is dense in t. Thus, (ek) is a
monotonr basis in the Banach space t. If j : t →W is a natural
map a 7→

∑∞
k=1 akwk , then ||j || ≤ 1. Set Ax := (〈x ′k , x〉)∞k=1; then

Ax ∈ t. Furthermore,

|||Ax |||t = sup
N
||

N∑
k=1

〈x ′k , x〉wk || ≤ K ||x ||, ∀ x ∈ X .

Thus, A ∈ L(X , t) and T = jA : X → t →W .
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Unconditional O-frames

Definition

Let T ∈ L(X ,W ), (x ′k)∞k=1 ⊂ X ∗, (wk)∞k=1 ⊂W . We say that
F := ((x ′k)∞k=1, (wk)∞k=1) is an UO-frame (unconditional operator
frame) for T , if for every x ∈ X the series

∑∞
k=1〈x ′k , x〉wk

converges unconditionally in W and

Tx =
∞∑
k=1

〈x ′k , x〉wk , x ∈ X .

Theorem

Let T ∈ L(X ,W ). TFAE:
1) T has a UO-frame;
2) T the operator T factors through a Banach space with an
unconditional basis;
3) T the operator T factors through a Banach sequence space
with an unconditional basis basis.
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O-frames and bounded approximation property

Definition

Let T ∈ L(X ,W ), C ≥ 1. We say that T has the C-BAP if for
every compact subset K of X , for every ε > 0 there is a finite rank
operator R : X →W such that ||R|| ≤ C ||T || and
supx∈K ||Rx − Tx || ≤ ε. T has the BAP, if it has the C-BAP for
some C ∈ [1,∞).

Theorem

Let X be a separable Banach space, W be any Banach space and
T ∈ L(X ,W ). TFAE:
(1) T has an O-frame;
(2) T has the BAP;
(3) T factors through a Banach space with a basis.
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Comparing Banach frames and O-frames

Comparing the usual Banach frames with O-frames.

Known: If X has an unconditional Banach frame, then:
1. The frame is shrinking iff X does not contain l1 iff X is
almost reflexive.
2. X is reflexive iff it does not contain both l1 and c0.

For O-frames, the situation is different. We have

Example

There exists an operator T : l1 → C [0, 1] such that
1. T is conditionally weakly compact and, thus, does not contain
l1. T has no shrinking O-frame.
2. T does not contain also c0, but is not weakly compact.
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Comparing Banach frames and O-frames

Trivially, If X does not have the approximation property, then
it can not have a Banach frame.
For O-frames, the situation is different. We have

Example

There exist two separable reflexive Banach spaces X ,Y and and an
operator T : X → Y so that:
Both X and Y do not have the approximation property, but T has
an unconditional O-frame.
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Comparing Banach frames and O-frames

Known: If a reflexive space has the approximation property,
then it has a Banach frame.
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Thank you for your attention!
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