On nuclearity of operators with *s*-nuclear adjoints

Oleg Reinov

Oleg Reinov On nuclearity of operators with *s*-nuclear adjoints

An operator $T: X \rightarrow Y$ is nuclear if it is of the form

$$Tx = \sum_{k=1}^{\infty} \langle x'_k, x \rangle y_k$$

for all $x \in X$, where $(x'_k) \subset X^*$, $(y_k) \subset Y$, $\sum_k ||x'_k|| ||y_k|| < \infty$. We use the notation N(X, Y)

If T is nuclear, then T^* is nuclear.

B b d B b

A. Grothendieck, Produits tensoriels topologiques et espases nucléaires, Mem. Amer. Math. Soc., Volume 16, 1955, 196 + 140.

Suppose T is a bounded linear operator acting between Banach spaces X and Y, Is it true that if T^* is nuclear then T is nuclear too?

As is well known, a negative answer was obtained already by T. Figiel and W.B. Johnson in:

T. Figiel, W.B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc., Volume 41 (1973), 197–200.

Definition

 $X \in AP$ iff

 $\forall \ Y, \forall \ \textit{compact} \ \ K \subset X, \ \forall \ \varepsilon > 0, \ \forall \ T : X \to Y,$

$$\exists R \in X^* \otimes Y : \sup_{x \in K} ||Rx - Tx|| \le \varepsilon.$$

۲

• Or, the same:

Definition

 $X \in AP$ iff for every $(x_n) \in c_0(X)$ and for every $\varepsilon > 0$ there exists a finite rank operator R in X such that $\sup_n ||Rx_n - x_n|| \le \varepsilon$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

 $X \in AP$ iff

 $\forall \ Y, \forall \ \textit{compact} \ \ K \subset X, \ \forall \ \varepsilon > 0, \ \forall \ T : X \to Y,$

$$\exists R \in X^* \otimes Y : \sup_{x \in K} ||Rx - Tx|| \le \varepsilon.$$

۹

• Or, the same:

Definition

 $X \in AP$ iff for every $(x_n) \in c_0(X)$ and for every $\varepsilon > 0$ there exists a finite rank operator R in X such that $\sup_n ||Rx_n - x_n|| \le \varepsilon$. A. Grothendieck, Produits tensoriels topologiques et espases nucléaires, Mem. Amer. Math. Soc., Volume 16, 1955, 196 + 140.

First part of "la proposition 15,2; chap. l, p. 86":

Case X*. Let $T \in L(X, Y)$ and assume that X^* has the *AP*. If $T^* \in N(Y^*, X^*)$, then $T \in N(X, Y)$.

A proof can be found in

J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, RI, 1977.

Second part of "la proposition 15,2; chap. I, p. 86": **Case Y**^{**}. Let $T \in L(X, Y)$ and assume that $Y^{**} \in AP$. If $T^* \in N(Y^*, X^*)$, then $T \in N(X, Y)$.

A B F A B F

Eve Oja

- E. Oja, O.I. Reinov, Un contre-exemple à une affirmation de A.Grothendieck, C. R. Acad. Sc. Paris. — Serie I, Volume 305 (1987), 121–122.
 - I. Let $T \in L(X, Y)$ and assume that $Y^{***} \in AP$. If $T^* \in N(Y^*, X^*)$, then $T \in N(X, Y)$.
 - II. There exist Banach spaces X, Y and a non-nuclear operator T : X → Y so that X and Y** have the metric approximation property and T* is nuclear.

Eve Oja

- E. Oja, O.I. Reinov, Un contre-exemple à une affirmation de A.Grothendieck, C. R. Acad. Sc. Paris. — Serie I, Volume 305 (1987), 121–122.
 - I. Let $T \in L(X, Y)$ and assume that $Y^{***} \in AP$. If $T^* \in N(Y^*, X^*)$, then $T \in N(X, Y)$.
 - II. There exist Banach spaces X, Y and a non-nuclear operator T : X → Y so that X and Y** have the metric approximation property and T* is nuclear.

s-nuclear operators – Applications de puissance p.éme sommable

An operator T : X → Y is s-nuclear (0 < s ≤ 1) if it is of the form

$$Tx = \sum_{k=1}^{\infty} \langle x'_k, x \rangle y_k$$

for all $x \in X$, where $(x'_k) \subset X^*, (y_k) \subset Y, \sum_k ||x'_k||^s ||y_k||^s < \infty$. We use the notation $N_s(X, Y)$.

 A. Hinrichs, A. Pietsch, *p*-nuclear operators in the sense of Grothendieck, Math. Nachr., Volume 283, No. 2 (2010), 232–261.

We are interested in the following question [Problem 10.1]: Suppose T is a (bounded linear) operator acting between Banach spaces X and Y, and let $s \in (0,1)$. Is it true that if T^* is s-nuclear then T is s-nuclear too?

s-nuclear operators – Applications de puissance p.éme sommable

An operator T : X → Y is s-nuclear (0 < s ≤ 1) if it is of the form

$$Tx = \sum_{k=1}^{\infty} \langle x'_k, x \rangle y_k$$

for all $x \in X$, where $(x'_k) \subset X^*, (y_k) \subset Y, \sum_k ||x'_k||^s ||y_k||^s < \infty$. We use the notation $N_s(X, Y)$.

 A. Hinrichs, A. Pietsch, *p*-nuclear operators in the sense of Grothendieck, Math. Nachr., Volume 283, No. 2 (2010), 232–261.

We are interested in the following question [Problem 10.1]: Suppose T is a (bounded linear) operator acting between Banach spaces X and Y, and let $s \in (0,1)$. Is it true that if T^* is s-nuclear then T is s-nuclear too?

s-nuclear operators – Applications de puissance p.éme sommable

It is not difficult to see that if T^* is *s*-nuclear, then T is *p*-nuclear with 1/s = 1/p + 1/2.

This is the best possible general result one can obtain without imposing any conditions on the Banach spaces involved. The sharpness of the assertion 1/s = 1/p + 1/2, for $s \in (2/3, 1]$, can be seen, for instance, in

O.I. Reinov, Approximation properties AP_s and *p*-nuclear operators (the case 0 < s ≤ 1), Journal of Mathematical Sciences, Volume 115, No. 2 (2003), 2243-2250. [Zapiski Nauchnykh Seminarov POMI, Vol. 270, 2000, pp. 277-291.]
So, we consider a slightly different question: Under which conditions on the Banach spaces involved is it valid that (*) an operator T ∈ L(X, Y) is nuclear if its adjoint T* is s-nuclear?

To formulate the theorem, we need a definition:

- Let $0 < q \le \infty$ and 1/s = 1/q + 1. We say that X has the approximation property of order s, if for every $(x_n) \in I_q(X)$ (where $I_q(X)$ means $c_0(X)$ for $q = \infty$) and for every $\varepsilon > 0$ there exists a finite rank operator R in X such that $\sup_n ||Rx_n x_n|| \le \varepsilon$.
- **Theorem 1.** Let $s \in (0, 1]$, $T \in L(X, Y)$ and assume that either $X^* \in AP_s$ or $Y^{***} \in AP_s$. If $T \in N_s(X, Y^{**})$, then $T \in N_1(X, Y)$.

In other words, under these conditions, from the *s*-nuclearity of the conjugate operator T^* , it follows that the operator T is nuclear.

To formulate the theorem, we need a definition:

- Let $0 < q \le \infty$ and 1/s = 1/q + 1. We say that X has the approximation property of order s, if for every $(x_n) \in I_q(X)$ (where $I_q(X)$ means $c_0(X)$ for $q = \infty$) and for every $\varepsilon > 0$ there exists a finite rank operator R in X such that $\sup_n ||Rx_n x_n|| \le \varepsilon$.
- Theorem 1. Let $s \in (0, 1]$, $T \in L(X, Y)$ and assume that either $X^* \in AP_s$ or $Y^{***} \in AP_s$. If $T \in N_s(X, Y^{**})$, then $T \in N_1(X, Y)$.

In other words, under these conditions, from the *s*-nuclearity of the conjugate operator T^* , it follows that the operator T is nuclear.

The examples in the following result show that the condition " X^* or Y^{***} has the approximation property of order s" is essential.

- **Theorem.** For each $s \in (2/3, 1]$ there exist a Banach space Z_s and a non-nuclear operator $T_s : Z_s^{**} \to Z_s$ so that Z_s^{**} has the metric approximation property, Z_s^{***} has the AP_r for every $r \in (0, s)$ and T_s^* is *s*-nuclear.
- Remark: The space Z₁^{***} is isomorphic to a space of type Z₁^{*} ⊕ E, where E is an asymptotically Hilbertian space. This gives us one more example of an asymptotically Hilbertian space which fails the approximation property.

・ 同 ト ・ ヨ ト ・ ヨ ト

The examples in the following result show that the condition " X^* or Y^{***} has the approximation property of order s" is essential.

- **Theorem.** For each $s \in (2/3, 1]$ there exist a Banach space Z_s and a non-nuclear operator $T_s : Z_s^{**} \to Z_s$ so that Z_s^{**} has the metric approximation property, Z_s^{***} has the AP_r for every $r \in (0, s)$ and T_s^* is *s*-nuclear.
- Remark: The space Z₁^{***} is isomorphic to a space of type Z₁^{*} ⊕ E, where E is an asymptotically Hilbertian space. This gives us one more example of an asymptotically Hilbertian space which fails the approximation property.

Example we use

- Let $r \in (2/3, 1]$, $q \in [2, \infty)$, 1/r = 3/2 1/q. There exist a separable reflexive Banach space Y_0 and a tensor element $w \in Y_0^* \widehat{\otimes}_r Y_0$ so that $w \neq 0$, $\widetilde{w} = 0$, the space Y_0 (as well as Y_0^*) has the AP_s for every s < r (but, evidently, does not have the AP_r). Moreover, Y_0 is of type 2 and of cotype q_0 for any $q_0 > q$.
- For q = 2 (that is, r = 1), the space Y_0 is a subspace of a space of the type $\left(\sum_j l_{p_j}^{k_j}\right)_{l_2}$ with $p_j \searrow 2$ and $k_j \nearrow \infty$. Every such space is an asymptotically Hilbertian space (for definitions and some discussion, see
 - P. G. Casazza, C. L. García, W. B. Johnson, An example of an asymptotically Hilbertian space which fails the approximation property, Proc. Amer. Math. Soc,, Volume 129, No. 10 (2001), 3017-3024.

・ロト ・得ト ・ヨト ・ヨト

Example we use

).

- Let $r \in (2/3, 1]$, $q \in [2, \infty)$, 1/r = 3/2 1/q. There exist a separable reflexive Banach space Y_0 and a tensor element $w \in Y_0^* \widehat{\otimes}_r Y_0$ so that $w \neq 0$, $\widetilde{w} = 0$, the space Y_0 (as well as Y_0^*) has the AP_s for every s < r (but, evidently, does not have the AP_r). Moreover, Y_0 is of type 2 and of cotype q_0 for any $q_0 > q$.
- For q = 2 (that is, r = 1), the space Y_0 is a subspace of a space of the type $\left(\sum_j l_{p_j}^{k_j}\right)_{l_2}$ with $p_j \searrow 2$ and $k_j \nearrow \infty$. Every such space is an asymptotically Hilbertian space (for definitions and some discussion, see
 - P. G. Casazza, C. L. García, W. B. Johnson, An example of an asymptotically Hilbertian space which fails the approximation property, Proc. Amer. Math. Soc,, Volume 129, No. 10 (2001), 3017-3024.

・ロ・ ・ 四・ ・ ヨ・ ・

O. I. Reinov, On linear operators with *s*-nuclear adjoints, $0 < s \le 1$, J. Math. Anal. Appl., Volume 415 (2014) 816-824.

3 N

Thank you for your attention!