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Abstract: For locally convex vector spaces (l.c.v.s.) E and F and for linear and continuous operator T : E → F
and for an absolutely convex neighborhood V of zero in F , a bounded subset B of E is said to be T -V-dentable
(respectively, T -V-s-dentable, respectively, T -V-f-dentable ) if for any ϵ > 0 there exists an x ∈ B so that

x /∈ co (B \ T−1(T (x) + ϵV ))

(respectively, so that x /∈ s-co (B \ T−1(T (x) + ϵV )), respectively, so that x /∈ co (B \ T−1(T (x) + ϵV )) ).
Moreover, B is called T -dentable (respectively, T -s-dentable, T -f-dentable ) if it is T -V-dentable (respectively,
T -V-s-dentable, T -V-f-dentable ) for every absolutely convex neighborhood V of zero in F.RN-operators between
locally convex vector spaces have been introduced in [5]. We present a theorem which says that, for a large class
of l.c.v.s. E,F, if T : E → F is a linear continuous map, then the following are equivalent:
1) T ∈ RN(E,F ).
2) Each bounded set in E is T -dentable.
3) Each bounded set in E is T -s-dentable.
4) Each bounded set in E is T -f -dentable.
Therefore, we have a generalization of Theorem 1 in [8], which gave a geometric characterization of RN-operators
between Banach spaces.
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1 Introduction
We use standard notations and terminology from the
theory of operators in Banach spaces and measure the-
ory (see, e.g., [1],[3]). Our main references on the the-
ory of the locally convex vector spaces is [12]. Banach
spaces are usually denoted by the letters X,Y, . . . ,
and the usual notations for the l.c.v.s. (locally convex
vector spaces) are E,F, . . . . All the spaces we con-
sider in the paper are over the field of the real num-
bers.

Some of the main notions and notations we will
use are ones of the convex, s-convex and closed con-
vex hulls of sets in Banach or l.c.v. spaces. Namely,

co(A) (respectively, co(A), respectively, s-
co(A)) denotes the convex hull (respectively, the clo-
sure of the convex hull, the s-closure of the convex
hull) of the set A. The s-closure is defined as s-
co(A) := {

∑
i≥1

aixi, where xi ∈ A, ai ≥ 0 and∑
i≥1

ai = 1}.

Let us recall some more notions:

Definition 1 Let X be a Banach space and (Ω,Σ) a
measureable space, consider m : Σ → X . m is called
a vector measure if for every sequence {Ai}∞1 of pair-
wise disjoint sets from Σ one has m(

∪∞
i=1Ai) =∑∞

i=1m(Ai).

Definition 2 Let m : Σ → X be a vector measure.
Variation of a vector measure is a non-negative, ex-
tended real valued function with value on set A ∈ Σ
is

|m|(A) = sup∏ ∑
Ai∈

∏ ∥m(Ai)∥

where
∏

denotes all finite partitions of A with pair-
wise disjoint sets in Σ; m is called vector measure of
bounded variation if |m|(Ω) is finite.

Let (Ω,Σ, µ) be a measure space.



Definition 3 A function f : Ω → X is µ-
measureable if there exists a sequence of simple func-
tions {fn}∞n=1 with lim

n
∥fn − f∥ = 0 µ-a.e. (see

[1],page 41).

Definition 4 A µ-measureable function f : Ω → X is
called Bochner integrable if there exists a sequence of
simple functions fn such that lim

n

∫
Ω ∥fn − f∥dµ = 0

(see [1],page 44); in this case we set
∫
A f = lim

n

∫
A fn

for every A ∈ Σ.

The following notions have been introduced in [9]
and, independently, in [6].

Definition 5 A linear continuous operator T : X →
Y is said to be RN-operator (T ∈ RN(X,Y )), if for
every X-valued measure m of bounded variation, for
any measure space (Ω,Σ, µ) with m << µ there ex-
ists a function f : Ω→ Y which is Bochner integrable
and such that

T (m)(A) =

∫
A
fdµ

for every A ∈ Σ.

Definition 6 Let T : X → Y be a linear continu-
ous operator A bounded subset B of Banach space X
is called T -dentable (respectively, T -f-dentable, T -s-
dentable), if for every ϵ > 0 there exists x ∈ B such
that

x /∈ co (B \ T−1(Dϵ(T (x)))).

(respectively, so that

x /∈ co (B \ T−1(Dϵ(T (x)) )),

resp.,

x /∈ s− co (B \ T−1(Dϵ(T (x)) ))),

The geometrical characterization of RN-operators
between Banach spaces has been given by following
theorem in [8].

Theorem 7 Let X , Y be Banach spaces and T :
X → Y , linear and continuous then the following
statements are equivalent:

1, T ∈ RN(X,Y )
2. Each bounded set in X is T -dentable.
3. Each bounded set in X is T -s-dentable.
4. Each bounded set in X is T -f -dentable.

Our aim is to generalize the above theorem for
operators between some l.c.v. spaces. Firstly, we
shall define the notion of RN-operators between lo-
cally convex vector spaces. For this, we recall the def-
initions of Banach spaces of type EB and ÊV . Then

we define the notions of T -dentability, T -s-dentability
and T -f-dentability for operators in l.c.v.s. (in the next
section).

Let E be a l.c.v.s. and B ⊆ E be bounded and
absolutely convex. Let EB =

∪∞
n=1 nB. Define

Minkowski function on EB w.r.t. B :

∥x∥ρB = ρB(x) = inf{λ ≥ 0 : x ∈ λB}.

It is a seminorm in general but we show that when
B is bounded and absolutely convex then it is a norm.
Suppose x ∈ EB such that ρB(x) = 0 so inf{λ ≥ 0 :
x ∈ λB} = 0 this implies for any ϵ > 0 ∃ λ ≥ 0 such
that x ∈ λB and λ ≤ ϵ, take ϵ = 1

n , so x ∈ 1
nB ∀

n ∈ N this implies x ∈
∩∞

n=1
1
nB = {0}. So x = 0

and (EB, ρB) is a normed space and its completion
ÊB is Banach space in E. Moreover, if B is complete
then EB is Banach space.

Similarly for an absolutely convex open
neighborhood of zero V = V (0) we set
EV =

∪∞
n=1 nV = E. Similarly we define

Minkowski function on EV w.r.t V , so that for x ∈ E
the semi norm of x is

∥x∥ρV = ρV (x) = inf{λ ≥ 0 : x ∈ λV }

.

We identify two elements x, y ∈ E w.r.t. ρV ,
obtaining a quotient EV with corresponding elements
x̂, ŷ, by x̂ = ŷ iff ρV (x − y) = 0. We get a normed
space ÊV and its completion gives us a Banach space
(ÊV , ρV ).
We will use the following important theorem (see
[10]) in the proof of our main theorem.

Theorem 8 (see [10]) Let E be a locally convex
vector space, V = V (0) be an absolute convex
neighborhood of 0, let B ⊆ E be a closed, bounded,
convex, sequentially complete and metrizable subset,
The following are equivalent:
(i) B is subset V -dentable.
(ii) B is subset V -f-dentable.

It has been shown in [10] that it follows from the
above theorem:

Let E be a locally convex vector space and let
B ⊆ E have the following properties:
(i) B is closed, bounded, convex and sequentially
complete,
(ii) for every bounded M ⊆ E and for x ∈ M there
exist a sequence xn ∈ M such that lim

n
xn = x,

(iii) each separable subset of B is metrizable.



Then the following are equivalent:
(i) B is subset V -dentable,
(ii)B is subset V -s-dentable,
(ii)B is subset V -f-dentable.

We will say that a locally convex vector space E
is an SBM-space if

(i) every closed bounded convex subset of E is
sequentially complete,

(ii) for every bounded M ⊆ E and for x ∈ M
there exists a sequence xn ∈ M such that lim

n
xn = x

and
(iii) each separable bounded subset of E is

metrizable.
Therefore, if E is an SBM-space, then every

bounded subset of E is V -dentable iff every bounded
subset of E is V -s-dentable iff every bounded subset
of E is V -f-dentable.

All quasi-complete (BM)-spaces [11], in particu-
lar, all Fréchet spaces are SBM-spaces.

2 Main Results
Definition 9 Let E and F be locally convex vector
spaces (l.c.v.s.), let T : E → F be a linear and
continuous operator and let V be an absolutely con-
vex neighborhood of zero in F. A bounded subset B
of E is said to be T -V-dentable (respectively, T -V-
s-dentable, respectively, T -V-f-dentable ) if for any
ϵ > 0 there exists an x ∈ B so that

x /∈ co (B \ T−1(T (x) + ϵV ))

(respectively, so that

x /∈ s− co (B \ T−1(T (x) + ϵV )) ,

respectively, so that

x /∈ co (B \ T−1(T (x) + ϵV )) ).

Definition 10 Let T : E → F be a linear and
continuous operator. A bounded subset B of E is
said to be T -dentable (respectively, T -s-dentable, T -
f-dentable ) if for every absolutely convex neighbor-
hood V of zero in F there exists an x ∈ B such that

x /∈ co (B \ T−1(T (x) + V ))

(respectively, so that

x /∈ s− co (B \ T−1(T (x) + V ))

and, respectively, so that

x /∈ co (B \ T−1(T (x) + V )) ).

Remark 11 From the above two definitions it is clear
that B ⊆ E is T -dentable if and only if for every V it
is T -V-dentable. The same is true for corresponding
properties of s-dentability and f-dentability.

The following is the definition of an RN-operator
between locally convex vector spaces, and this is our
main definition.

Definition 12 (see [5]) Let T : E → F be linear and
continuous (in l.c.v.s.). T ∈ RN(E,F ) (a Radon-
Nikodym operator or RN-operator) if for every com-
plete, absolutely convex and bounded set B ⊆ E and
for any absolutely convex neighborhood V ⊆ F of
zero the natural operator ΨV ◦ T ◦ ϕB : ÊB → E →
F → F̂V is RN -operator between Banach spaces ÊB

and F̂V .

Here, ΨV and ϕB are the natural maps (cf. defi-
nitions in Section 1).

Remark 13 For the operators in Banach spaces our
definition of RN -operators coincides with the origi-
nal definitions from [9], [6]. This must be clear.

Remark 14 The usual definition of a weakly compact
operator between locally convex spaces is: T : E →
F is weakly compact if T maps a neighborhood of
zero in E to a relatively weakly compact subset of F.
The analogous definition can be given for the compact
operators. For the weakly compact case this means
that

(1) There exists an absolutely convex neighbor-
hood V = V (0) in E such that if D := T (V ),
then D is bounded in F and the natural injection
ϕD : FD → F is weakly compact.

Since every weakly compact operator in Banach
spaces is Radon-Nikodym, we get from the definition
that every weakly compact operator in l.c.v.s. is an
RN-operator.

Following this way, we can defined also a class of
”bounded RN-operators”. Namely, let T maps E to
F. T is a bounded RN-operator if T takes a neighbor-
hood V to a bounded subset of F and the natural map
ϕT (V ) : FT (V ) → F is ”Radon-Nikodym”. But how
to understand ”Radon-Nikodym” in this case where
an operator maps a normed (or Banach) space to a lo-
cally convex space? We can go by a geometrical way
(saying that the image of ϕT (V ) is subset s-dentable.
Here the map ϕT (V ) is one-to-one, and we can follow
the assertion from [8] for operators in Banach spaces:
if U : X → Y is one-to-one then U is RN iff the U-
image of the unit ball is subset s-dentable). Another
way is just to apply the main definition from this paper.



Or, we can go by a traditional way: for T : X → F
with X Banach and F locally convex, say that T is of
type RN if for every operator U from an L1-space to
X the composition TU admits an integral represen-
tation with a (strongly) integrable F -valued function.
But in this case we are to give a good definition of
the ”integrability” of an F -valued function. All these
are the topic for the further considerations in another
paper.

Let us mention that in every ”right” definition
of RN-operator there must be an ”ideal property”:
ATB is RN for all linear continuous A,B if T is RN.
Thus, if we apply the definition 12 above as the main
definition (in this paper), then every operator ”of
type RN” considered above in this remark is ”right”
Radon-Nikodym. This is one of the reason that here
we will deal only with Definition 12.

If E = X is a Banach space then T ∈ RN(X,F )
iff for every (a.c.) neighborhood V = V (0) ⊂ F the
composition ΨV T belongs to RN(X, F̂V ). If F is a
Banach space too, then, evidently, T ∈ RN in the
sense of Definition 12 iff it is an RN-operator in the
usual sense of [9] and [6]. If E is a l.c.v.s. and F = Y
is Banach, then T ∈ RN(E, Y ) iff for every bounded
complete absolutely convex subset B ⊂ E the natu-
ral map TϕB : EB → E → Y is Radon-Nikodym,
what means that T ∈ RN(E, Y ) iff for any finite
measure space (Ω,Σ, µ) and for every µ-continuous
E-valued measure m̄ : Σ → E with bounded µ-
average { m̄(A)

µ(A) : A ∈ Σ, µ(A) ̸= 0} the measure
Tm̄ : Σ → Y has a Bochner derivative with respect
to µ. From this it follows that an operator T between
locally convex spaces E,F is Radon-Nikodym (in the
sense of Definition 12) iff for any finite measure space
(Ω,Σ, µ) and for every µ-continuous E-valued mea-
sure m̄ : Σ → E with bounded µ-average, for ev-
ery a.c. neighborhood V = V (0) ⊂ F the measure
ΨV Tm̄ : Σ → F̂V has a Bochner derivative with re-
spect to µ.

Proposition 15 Let ΨV : E → ÊV , where V =
V (0) is an absolutely convex open neighborhood of
zero then ΨV

−1(D1(0)) = V , where D1(0) is open
unit ball in ÊV .

Proof: ” ⊇ ”: Let x ∈ V , then by definition of ∥.∥ÊV
,

∥ΨV (x)∥ < 1 so V ⊆ ΨV
−1(D1(0))

” ⊆ ”: Let x ∈ ΨV
−1(D1(0)); then ΨV (x) ∈

D1(0). This implies ∥ΨV (x)∥ = 1 − c < 1 for some
c > 0, so inf{λ > 0 : x ∈ λV } = 1 − c < 1. This
implies x ∈ (1− c

2)V . Since V is absolutely convex
so λV ⊆ V for every |λ| < 1, therefore x ∈ V .
Hence ΨV

−1(D1(0)) = V. ⊓⊔

Theorem 16 Let E, F be locally convex vector
spaces and T : E → F be a linear continuous op-
erator. Consider the following conditions:

1) T ∈ RN(E,F ).
2) Each bounded set in E is T -dentable.
3) Each bounded set in E is T -s-dentable.
4) Each bounded set in E is T -f -dentable

We have 1) ⇔ 4), 2) ⇒ 3) ⇒ 4). If the space E is
an SBM-space then all the conditions are equivalent.

Proof: 1) ⇒ 4). Let B0 ⊆ E be bounded and V ⊆ F
be an absolutely convex neighborhood of 0; put B =
Γ(B0). By assumption in 1), the composition operator
ΨV ◦ T ◦ ϕB : EB → E → F → F̂V is an RN -
operator from EB to F̂V . By theorem 7 each bounded
subset in EB is ΨV TϕB-f-dentable. In particular, B0

is ΨV TϕB-f-dentable. Let ϵ > 0, there exists x ∈ B0

such that

(i) x /∈ co (B0 \ (ΨV TϕB)
−1(Dϵ(ΨV TϕB(x)))).

Proposition 15 implies that
ΨV

−1(Dϵ(ΨV TϕB(x))) = ΨV
−1(ΨV (T (x)))+ ϵV ,

so we get

(ii) x /∈ co (B0 \ T−1(T (x) + ϵV ),

otherwise there exist x1, x2 ..., xn in B0 where
xk /∈ T−1(T (x) + ϵV ) and λ1, λ2 ...,λn where
0 ≤ λk ≤ 1 and

∑n
k=1 λk = 1 such that∑n

k=1 λkxk = x. Since xk /∈ T−1(T (x) + ϵV )
so T (xk) /∈ (T (x) + ϵV ) hence T (xk) /∈
ΨV

−1(ΨV (T (x))) for each k = 1, 2 ... n. So,
we get xk /∈ ϕB

−1T−1ΨV
−1

(Dϵ(ΨV TϕB(x))) and∑n
k=1 λkxk = x which is contradicts (i), therefore

(ii) holds and hence B0 is T -V-f-dentable, which
proofs 4).

4) ⇒ 1). Let B ⊆ E be a bounded, absolutely
convex and complete subset and V ⊆ F be an ab-
solutely convex neighborhood of 0. We need to show
that the operator ΨV ◦T ◦ϕB : EB → E → F → F̂V

is RN . By theorem 7, it is enough to show that each
bounded B0 is ΨV TϕB-f-dentable. Let ϵ > 0; by as-
sumption in 4) there exists an x ∈ B0 such that

x /∈ co (B0 \ T−1(T (x) + ϵV )) ),

which, by above proposition, gives that

x /∈ co (B0 \ (ΨV TϕB)
−1(Dϵ(ΨV TϕB(x))) ).

This proofs 1).
2) ⇒ 3) ⇒ 4). Follows from definitions.
Suppose now that E is an SBM-space.
4) ⇒ 2). Let B ⊆ E be closed bounded and con-

vex and let V be an absolutely convex neighborhood



of zero in F . We show that B is subset T -V-dentable.
Clearly, B0 ⊂ B is T -V-f-dentable if and only if B0

is U = T−1(V )-f-dentable. From assumption, it fol-
lows that B is subset U -f-dentable. Applying the con-
sequence of theorem 8, we get that B is subset U -
dentable, or B is subset T -V-dentable, which proofs
2). ⊓⊔

Example 17 Consider any uncountable set Γ and the
classical Banach spaces c0(Γ) and l1(Γ); c0(Γ)

∗ =
l1(Γ). The closed unit ball B of l1(Γ) is weak∗ com-
pact and an Eberlein compact in this weak∗ topol-
ogy (see, e.g., [2]). This implies that every separa-
ble subset of (B,w∗) is metrizable and that (B,w∗)
has the Frechet-Uryson property, i.e. every point in
the closure of a subset is a limit of a sequence of
this subset. Thus, the space (l1(Γ), w

∗) is of type
SBM. The Banach space l1(Γ) has the RNP. There-
fore, every bounded subset of the space is dentable
(s-dentable, f-dentable), and thus every bounded sub-
set of (l1(Γ), w∗) is (w∗)-dentable too. The identity
map (l1(Γ), w

∗) → (l1(Γ, w
∗)) is Radon-Nikodym in

the sense of Definition 12. Moreover the space has
the RNP in the sense of the paper [11]. This directly
follows by Theorem 16, but not directly from the re-
sults of [11]. On the other case, for l1(Γ) this fact is
trivial. We can also say (by the same considerations)
that if X is any weakly generated Banach space (see
[2]) with X∗ ∈ RN, then the space (X∗, σ(X∗, X))
has all just mentioned properties (clearly, or by appli-
cation of Theorem 16).

Finally, if X is WCG, then (X∗, σ(X∗, X)) is
SBM. So, the theorem can be applied for all such
spaces.

On the other hand, there is an example (see
[4], Theorem 4), which shows that there exists
a separable Banach space Y such that the space
Yσ:=(Y, σ(Y, Y

∗)) does not have the RNP (in the
sense of [11]) and every bounded subset of which (of
Yσ) is s-dentable. Thus, the above theorem is not true
for general l.c.v.s.

Let us note that a l.c.v.s. E has the RNP in sense
of [11] iff the identity map E → E is an RN-operator.
Therefore, we obtain a generalization of a theorem
from [11]:

Corollary 18 For every SBM-space E (in particu-
lar, for every quasi complete l.c.v.s. with metrizable
bounded subsets, or for every Frechet space) the fol-
lowing are equivalent:

1. E has the RNP of [11].
2. Each bounded set in E is dentable.
3. Each bounded set in E is s-dentable.
4. Each bounded set in E is f -dentable.
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