H^∞ and the Grothendieck approximation property

Oleg Reinov

Saint Petersburg State University

Oleg Reinov H^{∞} and the Grothendieck approximation property

 $X \in AP$ iff

 $\forall Y, \forall \text{ compact } K \subset X, \ \forall \varepsilon > 0, \ \forall T : X \to Y,$ $\exists R \in X^* \otimes Y : \sup_{x \in K} ||Rx - Tx|| \le \varepsilon.$

Or, the same:

Definition

 $X \in AP$ iff for every $(x_n) \in c_0(X)$ and for every $\varepsilon > 0$ there exists a finite rank operator R in X such that $\sup_n ||Rx_n - x_n|| \le \varepsilon$.

A. Grothendieck, Produits tensoriels topologiques et espases nucléaires, Mem. Amer. Math. Soc., Volume 16, 1955, 196 + 140.

 $X \in AP$ iff

 $\forall Y, \forall \text{ compact } K \subset X, \ \forall \varepsilon > 0, \ \forall T : X \to Y,$ $\exists R \in X^* \otimes Y : \sup_{x \in K} ||Rx - Tx|| \le \varepsilon.$

Or, the same:

Definition

 $X \in AP$ iff for every $(x_n) \in c_0(X)$ and for every $\varepsilon > 0$ there exists a finite rank operator R in X such that $\sup_n ||Rx_n - x_n|| \le \varepsilon$.

A. Grothendieck, Produits tensoriels topologiques et espases nucléaires, Mem. Amer. Math. Soc., Volume 16, 1955, 196 + 140.

 $X \in BAP \text{ iff } \exists C \geq 1$:

$$\forall \quad compact \quad K \subset X, \ \forall \ \varepsilon > 0,$$
$$\exists \ R \in X^* \otimes X : \ \sup_{x \in K} ||Rx - x|| \le \varepsilon, \ ||R|| \le C$$

We say also C-MAP. If C = 1, $X \in MAP$.

Easy reformulation:

X has the property *C-MAP*, if given $\varepsilon > 0$, a Banach space *Y*, an operator $T \in L(X, Y)$ and any finite sequence $(x_k) \subset X$, there exists a finite rank operator *R* from *X* to *Y* such that 1) $||Tx_k - Rx_k|| < \varepsilon$ for all *k*, 2) $||R|| \le C||T||$.

 $X \in BAP \text{ iff } \exists C \geq 1$:

$$\forall \quad compact \quad K \subset X, \ \forall \ \varepsilon > 0,$$
$$R \in X^* \otimes X : \ \sup_{x \in K} ||Rx - x|| \le \varepsilon, \ ||R|| \le$$

We say also C-MAP. If C = 1, $X \in MAP$.

Easy reformulation:

X has the property *C-MAP*, if given $\varepsilon > 0$, a Banach space *Y*, an operator $T \in L(X, Y)$ and any finite sequence $(x_k) \subset X$, there exists a finite rank operator *R* from *X* to *Y* such that 1) $||Tx_k - Rx_k|| < \varepsilon$ for all *k*, 2) $||R|| \le C||T||$.

С.

 $X \in BAP \text{ iff } \exists C \geq 1$:

$$\forall \quad compact \quad K \subset X, \ \forall \ \varepsilon > 0,$$
$$\exists \ R \in X^* \otimes X : \ \sup_{x \in K} ||Rx - x|| \le \varepsilon, \ ||R|| \le C.$$

We say also C-MAP. If C = 1, $X \in MAP$.

Easy reformulation:

X has the property *C-MAP*, if given $\varepsilon > 0$, a Banach space *Y*, an operator $T \in L(X, Y)$ and any finite sequence $(x_k) \subset X$, there exists a finite rank operator *R* from *X* to *Y* such that 1) $||Tx_k - Rx_k|| < \varepsilon$ for all *k*, 2) $||R|| \le C||T||$. Separable classical Banach spaces and L^{∞} have the MAP. E.g.: $C(K), L_p(\mu), 1 \le p < \infty \dots$ [Groth.] Each of spaces $H^p, L^p/H_0^p$ ($1 \le p < \infty$), $A, C/A_0$ have the MAP. Moreover, all these spaces have bases.

- R. P. Boas, Jr., Isomorphism between H^p and L^p, Amer. J. Math. 77 (1955), 655-656. + a result of Marcinkiewicz and Paley on L^p, 1
- P. Billard, Bases dans H et bases de sous espaces de dimension finie dans A, Proc. Conf.,Oberwolfach (August 14-22, 1971), ISNM Vol. 20, Birkhauser, Basel and Stuttgart, 1972.
- S. V. Bockarev, Existence of a basis in the space of functions in the disk, and some properties of the Franklin system, Mat. Sb. (N.S.) 95 (137) (1974), 3-18 == Math. USSR Sbornik 24 (1974), 1-16.

• • = • • = •

See, generally,

- Pełczyński A. Banach spaces of analytic functions and absolutely summing operators – AMS Regional Conference Series in Mathematics 30, Providence, 1977.
 - $B(H) \notin AP$.
 - $L^{\infty}/H^{\infty} \in AP$.
 - H^{∞} ???

- 4 B b 4 B b

See, generally,

- Pełczyński A. Banach spaces of analytic functions and absolutely summing operators – AMS Regional Conference Series in Mathematics 30, Providence, 1977.
 - $B(H) \notin AP$.
 - $L^{\infty}/H^{\infty} \in AP$.
 - $H^{\infty} ???$

An operator T from a Banach space X into a Banach space Y is said to be p-absolutely summing, notation $T \in \prod_p(X, Y)$, where $0 , if there is a constant <math>C \in (0, \infty)$ such that for all finite families $(x_i)_{i=1}^n \subset X$

$$\sum_{i=1}^{n} ||Tx_{i}||^{p} \leq C^{p} \sup\{\sum_{i=1}^{n} |\langle x', x_{i} \rangle|^{p} : x' \in X, \, ||x'|| \leq 1\}$$

The p-summing norm $\pi_p(T)$ is defined as inf C.

For p > 1, X has the property AP_p (repectively, the property $K - MAP_p$), if given $\varepsilon > 0$, a Banach space Y, an operator $T \in \prod_{p'}(X, Y)$ and a weakty p'- summable sequence $(x_k) \subset X$, there exists a finite rank operator R from X to Y such that

$$\sum ||Tx_k - Rx_k||^{p'} < \varepsilon$$

(respectively,. and $\pi_{p'}(R) \leq K \pi_{p'}(T)$).

Easy to see:

X has the property $K - MAP_p$, if given $\varepsilon > 0$, a Banach space Y, an operator $T \in \prod_{p'}(X, Y)$ and any finite sequence $(x_k) \subset X$, there exists a finite rank operator R from X to Y such that 1) $||Tx_k - Rx_k|| < \varepsilon$ for all k, 2) $\pi_{p'}(R) \le K\pi_{p'}(T)$.

Recall:

Definition

 $X \in AP$ iff for every $(x_n) \in c_0(X)$ and for every $\varepsilon > 0$ there exists a finite rank operator R in X such that $\sup_n ||Rx_n - x_n|| \le \varepsilon$.

A generalization:

Definition

Let $0 < q \le \infty$ and 1/s = 1/q + 1. We say that X has the approximation property of order s, $X \in AP_s$, if for every $(x_n) \in I_q(X)$ (where $I_q(X)$ means $c_0(X)$ for $q = \infty$) and for every $\varepsilon > 0$ there exists a finite rank operator R in X such that $\sup_n ||Rx_n - x_n|| \le \varepsilon$.

Recall:

Definition

 $X \in AP$ iff for every $(x_n) \in c_0(X)$ and for every $\varepsilon > 0$ there exists a finite rank operator R in X such that $\sup_n ||Rx_n - x_n|| \le \varepsilon$.

A generalization:

Definition

Let $0 < q \le \infty$ and 1/s = 1/q + 1. We say that X has the approximation property of order s, $X \in AP_s$, if for every $(x_n) \in l_q(X)$ (where $l_q(X)$ means $c_0(X)$ for $q = \infty$) and for every $\varepsilon > 0$ there exists a finite rank operator R in X such that $\sup_n ||Rx_n - x_n|| \le \varepsilon$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- The space H^{∞} has the property AP_p for any $p > 0, p \neq 1$. Moreover, if p > 1, then H^{∞} and all its even duals have the property $1 - MAP_p$; if p < 1, then all the duals of H^{∞} have the property AP_p .
- Bourgain J., Reinov O.I. On the approximation properties for the space H[∞] // Math. Nachr. - 122 (1985). -P. 19-27.

• • = • • = •

- The space H^{∞} has the property AP_p for any $p > 0, p \neq 1$. Moreover, if p > 1, then H^{∞} and all its even duals have the property $1 - MAP_p$; if p < 1, then all the duals of H^{∞} have the property AP_p .
- Bourgain J., Reinov O.I. On the approximation properties for the space H[∞] // Math. Nachr. - 122 (1985). -P. 19-27.

.

A generalization

Manuel D. Contreras and Santiago Diaz-Madrigal, Uniform Approximation Properties for Spaces of Analytic Functions, Math. Nachr. 210 (2000), 85 -91

X has the uniform $K - MAP_p$, if given $\varepsilon > 0$, there is a function $N \in \mathbb{N} \to m(N) \in \mathbb{N}$ such that for every Banach space Y, any operator $T \in \prod_{p'}(X, Y)$ and any finite sequence $(x_k)_1^N \subset X$, there exists a finite rank operator R from X to Y such that 1) $||Tx_k - Rx_k|| < \varepsilon$ for all $k \le N$, 2) $\pi_{p'}(R) \le K\pi_{p'}(T)$, 3) dim $R(X) \le m(N)$.

Theorem. Let δ be a positive number. Then the space H[∞] has the uniform (1 + δ)-bounded approximation property of order p for every 1

・ 同 ト ・ ヨ ト ・ ヨ

A generalization

Manuel D. Contreras and Santiago Diaz-Madrigal, Uniform Approximation Properties for Spaces of Analytic Functions, Math. Nachr. 210 (2000), 85 -91 X has the uniform $K - MAP_{p}$, if given $\varepsilon > 0$, there is a function $N \in \mathbf{N} \to m(N) \in \mathbf{N}$ such that for every Banach space Y, any operator $T \in \prod_{p'}(X, Y)$ and any finite sequence $(x_k)_1^N \subset X$, there exists a finite rank operator R from X to Y such that 1) $||Tx_k - Rx_k|| < \varepsilon$ for all k < N, 2) $\pi_{p'}(R) \leq K \pi_{p'}(T)$, 3) dim $R(X) \leq m(N)$.

Theorem. Let δ be a positive number. Then the space H[∞] has the uniform (1 + δ)-bounded approximation property of order p for every 1

・ 同 ト ・ ヨ ト ・ ヨ ト

A generalization

Manuel D. Contreras and Santiago Diaz-Madrigal, Uniform Approximation Properties for Spaces of Analytic Functions, Math. Nachr. 210 (2000), 85 -91
X has the uniform K − MAP_p, if given ε > 0, there is a function N ∈ N → m(N) ∈ N such that for every Banach space Y, any

operator $T \in \prod_{p'}(X, Y)$ and any finite sequence $(x_k)_1^N \subset X$, there exists a finite rank operator R from X to Y such that

1)
$$||Tx_k - Rx_k|| < \varepsilon$$
 for all $k \leq N$,

2)
$$\pi_{p'}(R) \leq K \pi_{p'}(T)$$
,

- 3) dim $R(X) \leq m(N)$.
 - Theorem. Let δ be a positive number. Then the space H[∞] has the uniform (1 + δ)-bounded approximation property of order p for every 1

- 4 B b 4 B b

J.M. Delgado, E. Oja, C. Pineiro, E. Serrano The p-approximation property in terms of density of finite rank operators, J. Math. Anal. Appl. 354 (2009) 159-164 Main theorem on AP for H^{∞} : the space has the AP "up to logarithm".

• **Theorem.** Let $(x_n)_n$ be a sequence in H^{∞} such that

$$||x_n|| \leq \frac{1}{\log(1+n)}$$

Then for every $\varepsilon > 0$ there is a finite rank operator R in H^∞ with

$$\sup_n ||Rx_n - x_n|| \leq \varepsilon.$$

Moreover, we can control both the rank and the norm of R:

4 B K 4 B K

Main theorem on AP for H^{∞} : the space has the AP "up to logarithm".

• **Theorem.** Let $(x_n)_n$ be a sequence in H^{∞} such that

$$||x_n|| \leq \frac{1}{\log(1+n)}$$

Then for every $\varepsilon > 0$ there is a finite rank operator R in H^∞ with

$$\sup_n ||Rx_n - x_n|| \leq \varepsilon.$$

Moreover, we can control both the rank and the norm of R:

- **B** - **N** - **B** - **N**

Theorem. There is a function B(ε), ε > 0, such that if (x_n)_n is a sequence in H[∞], satisfying

$$||x_n|| \leq \frac{1}{\log(1+n)},$$

then there exists an operator $R: H^{\infty} \to H^{\infty}$ such that 1) $\sup_{n} ||Rx_{n} - x_{n}|| \leq \varepsilon$, 2) $rankT < B(\varepsilon)$, 3) $||T|| < B(\varepsilon.)$

■ Bourgain J., Reinov O.I. On the approximation properties for the space H[∞] // Math. Nachr. - 122 (1985). - P. 19-27. An operator $T: X \to Y$ is nuclear if it is of the form

$$Tx = \sum_{k=1}^{\infty} \langle x'_k, x \rangle y_k$$

for all $x \in X$, where $(x'_k) \subset X^*$, $(y_k) \subset Y$, $\sum_k ||x'_k|| ||y_k|| < \infty$. We use the notation N(X, Y)

If T is nuclear, then

$$T: X \to c_0 \to l_1 \to Y.$$

A. Grothendieck, Produits tensoriels topologiques et espases nucléaires, Mem. Amer. Math. Soc., Volume 16, 1955, 196 + 140. **Question**: Let T map X^{**} into X and π_X be the natural isometric injection from X to X^{**} . Suppose that

$$\pi_X T: X^{**} \to X \to X^{**}$$

is nuclear. Is it true that

$$T: X^{**} \to X$$

is nuclear too?

In general, the answer is NO.

Theorem. Let a linear operator T : H[∞] → A be such that there are two sequences of functions {g_n} ⊂ L¹ and {f_n} ⊂ H[∞], for which ∑_k ∫ |g_k| dm < ∞, ||f_n|| < 1/log (n + 1) for each n and

$$T(f) = \sum_{k=1}^{\infty} \int g_k(t) f(t) dm(t) f_k.$$

Then the operator T is nuclear as an operator, acting from H^{∞} into the disk-algebra A.

4 B K 4 B K

For the case of $H^{\infty}(M)$ on complex manifolds M, see

Alexander Brudnyi, On the approximation property for Banach spaces predual to H[∞]-spaces, Journal of Functional Analysis 263 (2012) 2863-2875 Thank you for your attention!