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TITS INDICES OVER SEMILOCAL RINGS

V. PETROV AND A. STAVROVA

1. Introduction

In his famous paper [Ti66] Jacques Tits showed that any semisimple group G over a field is
determined by its anisotropic kernel and a combinatorial datum called the Tits index of G. Some
arguments were sketched or omitted there, and appeared only in [Ti71, Ti90]. The goal of the
present paper is to show that the Tits classification carries over to arbitrary connected semilocal
rings. We do not rely on the field case, but rather provide a shortened and simplified version of
Tits’ arguments.

Our proof consists of two parts: combinatorial and representation-theoretic. Combinatorial
restrictions follow from the presence of the opposition involution on the extended Dynkin diagram.
It is worth mentioning that already these restrictions allow to exclude most of the “wrong” indices
(Proposition 3). Representation-theoretic arguments rely on the fact that, given a good enough
representation of an algebraic group over a splitting field, one can twist it to a representation
into some Azumaya algebra, called a Tits algebra (cf. [Ti71]), over the base field. We show that
this holds over arbitrary schemes (Theorem 1). In Theorem 2 we give a necessary and sufficient
condition in terms of Tits algebras that a semisimple group scheme H can be embedded into a
larger semisimple group G as the derived subgroup of a Levi subgroup of a parabolic subgroup
of G. Combining this result with the combinatorial restrictions, we obtain the list of all possible
indices, and show that the existence of a group with a given index is equivalent to the existence of
an anisotropic group (its anisotropic kernel) subject to certain explicitly stated restrictions (§ 6,
Theorem 3).

2. Semisimple group schemes

In this section we reproduce some definitions and results of [SGA]. Throughout the paper, all
references starting with Exp. YZ refer to this source.

Let S be a scheme (not necessarily separated). A group scheme G over S is called reductive
if it is affine and smooth over S, and its geometric fibers Gk(s) are connected reductive groups

in the usual sense for all s ∈ S (Exp. XIX Déf. 4.7).When S is reduced, the smoothness can be
replaced by the condition that G is finitely presented over S and the dimension of a fiber is locally
constant (see Exp. VIB, Cor. 4.4). The type of G at s ∈ S is the root datum of Gk(s). The type

is locally constant (Exp. XXII Prop. 2.8). To simplify the exposition, in the sequel we consider
reductive group schemes of constant type only. Thus the type of a reductive group scheme G is
a root datum R = (Φ,Λ,Φ∗,Λ∗), where Φ is a root system, called the root system of G, Λ is a
Z-lattice containing Φ, called the lattice of weights of G, and Φ∗ and Λ∗ are the dual objects (Exp.
XXI Déf. 1.1.1). A reductive group G is semisimple, if the rank of Φ equals that of Λ. We also
usually include in the type a fixed subset of positive roots Φ+ in Φ, which determines a system of
simple roots of Φ and, therefore, a Dynkin diagram D.

Over any scheme S there exists a unique split group scheme G0 of a given type R, which
actually comes from a group scheme over Spec Z known as the Chevalley – Demazure group scheme
(Exp. XXV Thm. 1.1). Quasi-split group schemes over S of the same type as G0 are parametrized
by H1(S, Aut (R, Φ+)), where Aut (R, Φ+) is the group of automorphisms of R preserving Φ+ (cf.
Exp. XXIV Thm. 3.11). All cohomology groups we consider are with respect to the fpqc topology
(but note that H1(S, H) = H1

ét(S, H) when H is smooth).
Every semisimple group scheme G is an inner twisted form of a uniquely determined quasi-split

group Gqs, given by a cocycle ξ ∈ Z1(S, Gad
qs ), where Gad

qs is the adjoint group acting on Gqs by
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inner automorphisms; cocycles in the same class in H1(S, Gad
qs ) produce isomorphic group schemes

(Exp. XXIV 3.12.1).
A Dynkin diagram D is nothing but a finite set of vertices together with a subset E ⊆ D ×D

of edges and a length function D → {1, 2, 3} (in other words, a colored graph). The scheme-
theoretic counterpart of this notion is called a Dynkin scheme (Exp. XXIV § 3). So a Dynkin
scheme over S is a twisted finite scheme D over S together with a subscheme E ⊆ D×S D and a
map D → {1, 2, 3}S. Isomorphisms, base extensions and constant Dynkin schemes are defined in
an obvious way. We denote by DS the constant Dynkin scheme over S corresponding to a Dynkin
diagram D. By Aut (D) we always mean the scheme of automorphisms of D over S as a Dynkin
scheme; it is a twisted constant group scheme over S.

To any semisimple group scheme G one associates the Dynkin scheme Dyn(G) in such a way
that Dyn(G) is isomorphic to Dyn(Gqs); and Dyn(Gqs) is a twisted form of DS corresponding

to the image in Z1(S, Aut (D)) of a cocycle ξ ∈ Z1(S, Aut (R, Φ+)) defining Gqs under the map
induced by the canonical map Aut (R, Φ+) → Aut (D) (Exp. XXIV 3.7). When Gqs is simply
connected or adjoint, the latter map is an isomorphism.

Let T/S be a Galois covering that splits Dyn(G), i.e. Dyn(G)T ≃ DT . For example, one can
take as T the torsor corresponding to the cocycle in Z1(S, Aut (D)). Every element σ ∈ Aut (T/S)
acts on Dyn(G)T and therefore defines some ϕσ ∈ Aut (D)(T ) such that the diagram

DT

��

ϕσ // DT

��
T

σ // T

commutes. By Galois descent this action (which is called the ∗-action) completely determines
Dyn(G). If S is connected, the ∗-action can be considered as an action of Aut (T/S) on the
Dynkin diagram D, and extends by Q-linearity to the ∗-action on Λ.

A subgroup scheme P of G is called parabolic if it is smooth and Pk(s) is a parabolic subgroup

of G
k(s)

in the usual sense for every s ∈ S (Exp. XXVI Déf. 1.1). To a parabolic subgroup P one

can attach the type t(P ) of P which is a clopen subscheme of Dyn(G) (Exp. XXVI 3.2). Note that
the clopen subschemes of Dyn(G) are in one-to-one correspondence with the ∗-invariant clopen
subschemes of DT , where T/S is as above.

3. Representation-theoretic lemmas

By a representation of a group scheme G over S we mean a homomorphism of algebraic groups
ρ : G → GL1(A), where A is an Azumaya algebra (more formally, a sheaf of Azumaya algebras)
over S.

Let G0 be a split semisimple group scheme over a scheme S, and let G0 → GL(V ) be a repre-
sentation of G0 on a projective module (more formally, a locally free sheaf of modules) V of finite
rank over S. Fix a maximal split torus T0 of G0 and let Λ and Λr be its lattices of weights and
roots respectively. Then V decomposes into a direct sum

⊕
λ∈Λ Vλ so that for any scheme S′ over

S, any t ∈ T0(S
′), and any v ∈ Vλ(S′) one has ρ(t)v = λ(t)v (Exp. I Prop. 4.7.3). A character λ

with Vλ 6= 0 is called a weight of V .
The cocenter Cocent(G) of G is the group scheme Hom(Cent(G), Gm). When G is split it can

be identified with the constant group scheme (Λ /Λr)S . If G is given by a cocycle ξ ∈ Z1(S, Gad
qs )

then Cent(G) is isomorphic to Cent(Gqs), and therefore Cocent(G) is isomorphic to Cocent(Gqs).
Of course, the isomorphism depends on the choice of ξ (or rather on the corresponding element in
Isomext (Gqs, G)(S), see Exp. XXIV Rem. 1.11).

A representation ρ : G→ GL1(A) will be called center preserving if ρ(Cent(G)) ⊆ Cent(GL1(A)).
In this case ρ induces a homomorphism ρad : Gad → PGL1(A) and determines an element λρ ∈
Cocent(G)(S), which is the restriction of ρ to Cent(G) composed with the natural isomorphism
Cent(GL1(A)) ≃ Gm.

Lemma 1. (1) G → GL(V ) is center preserving if and only if over a splitting covering∐
Sτ → S every two weights of V differ by an element of Λr.
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(2) The dual G → GL(V ∗) of a center preserving representation G → GL(V ) is center pre-
serving.

(3) The tensor product G → GL(V1 ⊗ V2) of center preserving representations G → GL(V1)
and G→ GL(V2) is center preserving.

(4) For any representation ρ : G → GL(V ) and an element λ ∈ Cocent(G)(S), the submodule
W ⊆ V defined by

W (S′) = {v ∈ V ×S S
′ | c · v = λ(c)v for all fpqc S′′/S′ and c ∈ Cent(G)(S′′)}

is a G-invariant direct summand of V . Moreover, the representation ρ′ : G → GL(W ) is
center preserving and λρ′ = λ if W 6= 0.

Proof. For (1) observe that since the condition ρ(Cent(G)) ⊆ Cent(GL(V )) is local with respect to
fpqc topology, we can assume that G is split. Then V is center preserving if and only if restrictions
of every two weights λ and µ of V to Cent(G) coincide. This means exactly that λ− µ belongs to
Λr (Exp. XXII Rem. 4.1.8).

Parts (2) and (3) follow from (1).
To prove (4), define W ′(S′) as the set of all v ∈ V (S′) such that there exist an fpqc covering∐
S′

τ → S′ and, for each τ , a finite number of elements λ1, . . . , λk ∈ Cocent(G)(S′
τ ) distinct from

λ and elements v1, . . . , vk ∈ V ×S S
′
τ such that v = v1 + . . . + vk and cvi = λi(c)vi for all fpqc

S′′
τ /S

′
τ and c ∈ Cent(G)(S′′

τ ). Obviously W and W ′ are G-invariant (sheaves of) submodules of V .
Over a splitting covering of G it is easily seen that V = W ⊕W ′; therefore it is also true over the
base S. By construction the representation ρ′ : Gqs →W is center preserving and λρ′ = λ. �

Lemma 2. Let Gqs be a quasi-split group over S. Then any element of Cocent(Gqs)(S) appears
as λρ for some center preserving representation ρ : Gqs → GL(V ).

Proof. Over a splitting covering of Gqs choose a weight λ ∈ Λ that represents a given element of
Cocent(Gqs)(S). Obviously λ + Λr is ∗-invariant. It is known (see [B, Ch. VI, Exerc. 5 du §2])
that any weight is equivalent modulo Λr to a minuscule weight. On the other hand, by [Ti71, 3.1]
we have (Λ /Λr)

∗ = Λ∗ /Λr
∗. So we may assume that λ is a ∗-invariant minuscule weight.

Consider first the split group G0 over Z. Recall briefly the construction of a Weyl module V (λ)
for G0 (see [Jan] for details). We start from a finite dimensional irreducible (G0)C-module with
the highest weight λ; we fix a vector v+ of the weight λ (which is unique up to a scalar). Denote
by U the universal enveloping algebra of the Lie algebra of (G0)C, by U

+ and U
− its subalgebras

generated by the positive (respectively, negative) root subspaces, and by UZ, U
+
Z , U

−
Z their Z-forms

used in the Chevalley’s construction of split reductive groups. Then V (λ) is defined as U
−
Z v+.

Note that V (λ) is center preserving by Lemma 1, (1).
Let Γ be a subgroup of Aut (R, Φ+) preserving λ. Then any element γ ∈ Γ induces an auto-

morphism of UZ which preserves U
+
Z and U

−
Z . Since γ preserves λ, the representations ρ : (G0)C →

GL(V (λ)C) and ρ ◦ γ : (G0)C → GL(V (λ)C) are equivalent, and their differentials are equivalent as
well. Therefore, there exists ϕ ∈ GL(V (λ)C) such that γ(g)ϕ(v) = ϕ(gv) for every v ∈ V (λ)C and
g ∈ U; moreover, ϕ is unique up to a scalar. It is easy to see that ϕ preserves the line spanned by
v+, and we can normalize ϕ so that ϕ(v+) = v+. Now,

ϕ(U−
Z v+) ≤ γ(U−

Z )ϕ(v+) = U
−
Z v+,

so ϕ induces an automorphism ϕZ of V (λ) compatible with γ and preserving v+. Since Z[G0] is a
Hopf subalgebra of Q[G0] and V (λ) is a subcomodule of V (λ)Q, and C /Q is faithfully flat, ϕZ is
an equivalence of the representations ρ : G0 → GL(V (λ)) and ρ ◦ γ : G0 → GL(V (λ)). Moreover,
since ϕZ is uniquely determined by γ, we obtain a homomorphism ψ : Γ→ GL(V (λ)).

Now let ξ be a cocycle in Z1(S, Γ) producing Gqs. The cocycle ψ∗(ξ) then defines a projective
module V together with a representation Gqs → GL(V ) we need. �

4. Tits algebras

Theorem 1. Let G be a semisimple group scheme of constant type over S given by a cocycle
ξ ∈ Z1(S, Gad

qs ).
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(1) There exist two natural mutually quasi-inverse equivalences Fξ, F
′
ξ between the categories

of group schemes over S with Gad
qs -action (by group automorphisms) and group schemes

over S with Gad-action. They depend only on the class of ξ in Isomext (Gqs, G)(S) (cf.
Exp. XXIV Rem. 1.11). In particular, each center preserving representation ρ : Gqs →
GL(V ) gives rise to a center preserving representation Fξ(ρ) : G → GL1(Aξ, ρ) for some
Azumaya algebra Aξ, ρ.

(2) The class [Aξ, ρ] in the Brauer group Br(S) depends only on λFξ(ρ), and not on the partic-

ular choices of ρ and ξ. Its image in H2(S, Gm) coincides with (λρ)∗δ([ξ]), where

(λρ)∗ : H2(S, Cent(Gqs))→ H2(S, Gm),

and δ is the connecting homomorphism in the long exact sequence arising from the sequence

1 // Cent(Gqs) // Gqs // Gad
qs

// 1.

Proof. 1. Let u be the class of ξ in Isomext (Gqs, G)(S). Consider the left Gad- and right Gad
qs -

torsor I = Isomint u(Gqs, G) (see Exp. XXIV Rem. 1.11). Let H be a group scheme with a

Gad
qs -action. Then Fξ(H) = I ×Gad

qs H is a group scheme over I/Gad
qs ≃ S with a left Gad-action.

Similarly, F ′
ξ is defined by F ′

ξ(H
′) = I ′×Gad

H ′, where I ′ = Isomint u−1(G, Gqs). Further, we have

isomorphisms I ′ ×Gad

I ≃ Gad
qs and I ×Gad

qs I ′ ≃ Gad, hence Fξ and F ′
ξ are mutually quasi-inverse.

2. The cohomological class in H1(S, PGL(V )) corresponding to Aξ, ρ is nothing but ρad
∗ ([ξ]),

where ρad : Gad
qs → PGL(V ) is the representation induced by ρ. Now the last assertion of the

Theorem follows from the commutativity of the diagram

H1(S, Gad
qs )

ρad
∗

��

δ // H2(S, Cent(Gqs))

(λρ)∗

��
H1(S, PGL(V )) // H2(S, Gm),

which comes from the diagram

1 // Cent(Gqs)

λρ

��

// Gqs

ρ

��

// Gad
qs

ρad

��

// 1

1 // Gm
// GL(V ) // PGL(V ) // 1.

Thus, once ξ is fixed, the class of Aξ, ρ depends only on λρ. Note that, in view of the isomorphism
Cocent(G) ≃ Cocent(Gqs), λρ can be identified with λFξ(ρ) . We need to show that [Aξ, ρ] does
not depend on ξ. Let η be another cocycle producing G. Then ρ′ = F ′

η(Fξ(ρ)) is ρ composed with
the corresponding outer automorphism of Gqs; in particular, its target is still GL(V ). Obviously
Fη(ρ′) ≃ Fξ(ρ), and we are done. �

The Azumaya algebra Aξ,ρ will be called the Tits algebra of G corresponding to a center pre-
serving representation ρ : Gqs → GL(V ). We denote by βG the homomorphism

βG : Cocent(G)(S)→ Br(S)

λ 7→ [Aξ, ρ] with λFξ(ρ) = λ.

It is well-defined in view of Lemma 2 and Theorem 1. To see that βG is indeed a homomorphism
one can use either the tensor product of representations or the fact that Br(S) is a subgroup in
H2(S, Gm).

If the element in Isomext (Gqs, G)(S) is fixed, we will consider βG as a homomorphism from
Cocent(Gqs) to Br(S). Further, for an element λ of Λ∗ we will write βG(λ) instead of βG(λ|Cent(Gqs)).

The Dynkin scheme Dyn(G) is the disjoint union of its minimal clopen subschemes which will
be called orbits for brevity; they indeed correspond to orbits of the ∗-action on a set of simple
roots.
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Assume that G is simply connected. Let Tqs be a fixed maximal torus of Gqs, T
ad
qs be the

respective torus in Gad
qs . Over a splitting covering we have two canonical homomorphisms

ω : Dyn(G)→ Hom(Tqs,Gm),

α : Dyn(G)→ Hom(T ad
qs ,Gm),

that associate to each vertex i of the Dynkin diagram the fundamental weight ωi or, respectively,
the simple root αi. By faitfully flat descent these homomorphisms are defined over the base scheme
S.

Let O be an orbit in Dyn(G). Composing ω (resp., α) with the inclusion O → Dyn(G), we
obtain a weight ωO : (Tqs)O → Gm (resp., a root αO : (T ad

qs )O → Gm), which will be called the
canonical weight (resp., the canonical root) corresponding to O (cf. Exp. XXIV 3.8). It is easy to
see that αO and ωO are ∗-invariant weights of GO.

Note that we also have homomorphisms (where RS′/S stands for the Weil restriction,
∏

S′/S in

the notation of [SGA])

ω̄O : Tqs → RO/S(Gm),

ᾱO : T ad
qs → RO/S(Gm),

which are the compositions of RO/S(ωO) and RO/S(αO) with the canonical homomorphisms Tqs →

RO/S((Tqs)O) and T ad
qs → RO/S((T ad

qs )O).
If O splits over an extension S′/S into a disjoint union

∐
iOi, then (ω̄O)S′ (resp. (ᾱO)S′)

is equal to
∏

i ωOi (resp.,
∏

i αOi) composed with the natural isomorphism
∏

i ROi/S′(Gm) ≃
R‘

i Oi/S′(Gm). In particular, over a splitting covering ω̄O (resp. ᾱO) can be identified with an

appropriate product of ωi (resp., αi).

Proposition 1. (1) In the above setting we have the isomorphism
∏

O

ω̄O : Tqs ≃
∏

O

RO/S(Gm)

(cf. Exp. XXIV Prop. 3.13).
(2) If L′

qs is the standard Levi subgroup of a standard parabolic subgroup P in Gad
qs , then we

have the isomorphism
∏

O : O 6⊂t(P )

ᾱO : Cent(L′
qs) ≃

∏

O : O 6⊂t(P )

RO/S(Gm).

(3) We have
L′

qs = CentGqs(Q) = CentGqs(Qdiag),

where Q is the natural split subtorus
∏

O : O 6⊂t(P ) Gm of
∏

O : O 6⊂t(P )RO/S(Gm), and Qdiag

is the split torus of rank 1 embedded diagonally into Q.

Proof. Let’s prove (2). Note that Cent(L′
qs) is contained in T ad

qs , so the map is well-defined. Over
each element Sτ of a splitting covering of S the Dynkin scheme can be identified with a set D
and t(P ) with a subset D \ J . The map

∏
O : O 6⊂t(P ) ᾱO becomes

∏
i∈J αi, and Cent(L′

qs)Sτ equals⋂
i∈D\J Ker αi. But ∏

i∈D

αi : (T ad
qs )Sτ →

∏

i∈D

Gm

is an isomorphism, and (2) follows. Part (1) can be proved similarly and even easier.
We have obvious inclusions

L′
qs ≤ CentGqs(Q) ≤ CentGqs(Qdiag),

so to prove (3) it suffices to show that H = CentGqs(Qdiag) is contained in L′
qs. We can pass

to a splitting covering. By Exp. XXVI Prop. 6.1 HSτ is smooth with connected fibers; clearly it
contains (T ad

qs )Sτ . By Exp. XXII 5.4.1 such subgroup is uniquely determined by the set of roots α
such that the generator eα of Lie((Gqs)Sτ ) is contained in its Lie algebra. Note that the restriction
of a simple root αi to Qdiag is identity when i ∈ J and is trivial otherwise. So eα belongs to
Lie(HSτ ) if and only if the sum of its coefficients at αi with i ∈ J is zero. But (L′

qs)Sτ is also
smooth with connected fibers and corresponds to the same set of roots, hence L′

qs = H . �
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Proposition 2. In the setting of Theorem 1, assume moreover that G is simply connected and
Pic(Dyn(G)) = 0. Then [ξ] comes from an element in H1(S, Gqs) if and only if βGO(ωO) = 0 for
each orbit O.

Proof. If [ξ] belongs to the image of H1(S, Gqs) → H1(S, Gad
qs ) then δ([ξ]O) = 0 and therefore

βGO = 0 for each O. Conversely, assume that βGO(ωO) = 0 for each O. Proposition 1 applied
to the Borel subgroup implies that Tqs ≃

∏
O RO/S(Gm) and T ad

qs ≃
∏

O RO/S(Gm). Now the

Shapiro lemma (cf. Exp. XXIV Prop. 8.2) implies that the image of δ([ξ]) in H2(S, Tqs) is trivial,

while H1(S, T ad
qs ) = Pic(Dyn(G)) = 0. Now the claim follows from the exact sequence

H1(S, T ad
qs ) // H2(S, Cent(Gqs)) // H2(S, Tqs),

which comes from the sequence

1 // Cent(Gqs) // Tqs // T ad
qs

// 1.

�

Theorem 2. (1) Let G be a semisimple group scheme of constant type over S, P be its par-
abolic subgroup admitting a Levi subgroup L, H be the derived subgroup of L. Denote by
Gqs and Hqs the corresponding quasi-split groups and by Λ the lattice of weights of Gqs.
For every λ ∈ Λ∗ denote by λ′ the restriction of λ to Cent(Hqs). Then βG(λ) = βH(λ′).
In particular, for any α ∈ Λr

∗ one has βH(α′) = 0.
(2) Let Gqs be a quasi-split simply connected group, Pqs be a standard parabolic subgroup of

Gqs, Lqs be its standard Levi subgroup, Hqs be the derived subgroup of Lqs. Assume that
H is an inner form of Hqs, satisfying βHO (α′

O) = 0 for all O 6⊂ t(Pqs). Then there exist
an inner form G of Gqs and its parabolic subgroup P admitting a Levi subgroup L, such
that over a quasi-splitting covering the pair L ≤ G becomes isomorphic to Lqs ≤ Gqs, and
the derived subgroup of L is isomorphic to H.

(3) In the setting of (2), assume that Pic(Dyn(S)) = 0. Then G is unique up to an isomor-
phism.

Proof. 1. Let ξ be a cocycle in Z1(S, Gad
qs ) corresponding to G, given by elements gστ ∈ G

ad
qs (Sσ×S

Sτ ) for some covering
∐
Sτ → S that quasi-splits G. Over each Sτ one can (possibly, passing to

a finer covering) conjugate PSτ and LSτ by some element of Gad
qs to Pqs and Lqs, where Pqs is a

standard parabolic subgroup of Gqs and Lqs is its standard Levi subgroup. Adjusting ξ by the
coboundary given by these elements, we can assume that all gστ ’s belong to L′

qs, where L′
qs is the

image of Lqs in Gad
qs , by Exp. XXVI Prop. 1.15 and Cor. 1.8 (cf. Exp. XXVI 3.21)

Let ρ : Gqs → GL(V ) be a center preserving representation with a weight λ. Consider its
restriction to Hqs and denote by U the center preserving direct summand corresponding to λ′

and by U ′ its complement invariant under Hqs (see Lemma 1, (4)). Denote by Tqs the standard
maximal torus of Lqs and by T ′

qs its intersection with Hqs. Note that U and U ′, being sums of
weight subspaces of T ′

qs, are stable under Tqs and, therefore, are invariant under the action of Lqs.

Hence the map H1(S, L′
qs) → H1(S, PGL(V )) factors through H1(S, (GL(U) × GL(U ′))/Gm),

where Gm is embedded into GL(U)×GL(U ′) diagonally.
Now the claim is obtained by comparing the diagrams

H1(S, (GL(U)×GL(U ′))/Gm) //

��

H2(S, Gm)

H1(S, PGL(V )) // H2(S, Gm)

and

H1(S, (GL(U)×GL(U ′))/Gm) //

��

H2(S, Gm)

H1(S, PGL(U)) // H2(S, Gm),
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which come from the sequences

1 // Gm
// GL(U)×GL(U ′) //

��

(GL(U)×GL(U ′))/Gm

��

// 1

1 // Gm
// GL(V ) // PGL(V ) // 1.

and

1 // Gm
// GL(U)×GL(U ′) //

��

(GL(U)×GL(U ′))/Gm

��

// 1

1 // Gm
// GL(U) // PGL(U) // 1.

2. Let ζ be a cocycle in Z1(S, Had
qs ) = Z1(S, Lad

qs ) corresponding to H . Denote by L′
qs and H ′

qs

the images of Lqs and Hqs in Gad
qs . Let us compute the image δ([ζ]) ∈ H2(S, Cent(L′

qs)). Using
the assumption, Theorem 1 (3), and the commutative diagram

H1(S, Had
qs )

δ // H2(S, Cent(H ′
qs))

��
H1(S, Lad

qs )
δ // H2(S, Cent(L′

qs)),

we see that (αO)∗δ([ζO ])) = 0 for any O 6⊂ t(Pqs). Now Proposition 1 (2) and the Shapiro lemma

show that δ([ζ]) = 0. It means that [ζ] comes from some [ξ] ∈ H1(S, L′
qs), and the image of [ξ] in

H1(S, Gad
qs ) defines the desired G.

3. Let G be such a group; denote by ξ a corresponding cocycle in Z1(S, Gad
qs ). As we have seen

earlier, [ξ] comes from an element of H1(S, L′
qs), say [ζ]. We have to show that [ζ] (and a fortioti

[ξ]) is completely determined by its image in H1(S, Lad
qs ), or, in other words, that the canonical map

π∗ : H1(S, L′
qs)→ H1(S, Lad

qs ) is injective. Since Cent(L′
qs) is central in L′

qs, H1(S, Cent(L′
qs)) acts

on H1(S, L′
qs), and the orbits of the action coincide with the fibers of π∗. But H1(S, Cent(L′

qs))
by Proposition 1 (2) and the Shapiro lemma injects into Pic(Dyn(G)), which is trivial by the
assumption. �

5. Combinatorial restrictions

From now on we assume that S = SpecR, where R is a connected semilocal ring. Recall that
in this case all minimal parabolic subgroups Pmin of G are conjugate under G(S) and hence have
the same type tmin = t(Pmin), which is a clopen subscheme of Dyn(G) (Exp. XXVI Cor. 5.7). If
T/S is a Galois covering that splits Dyn(G), (tmin)T is a clopen ∗-invariant subscheme of DT . By
Exp. XXVI Lemme 3.8 P 7→ t(P ) is a bijection between parabolic subgroups P of G containing
Pmin and clopen subschemes t of Dyn(G) containing tmin.

Since S is affine, for any parabolic subgroup P of G there exists a Levi subgroup L (Exp. XXVI
Cor. 2.3) of P , and a unique parabolic subgroup P− which is opposite to P with respect to L,
i.e. satisfies P− ∩ P = L (Exp. XXVI Th. 4.3.2). The type t(P−) is the image sG(t(P )) of t(P )
under an automorphism sG of Dyn(G) called the opposition involution (Exp. XXIV Prop. 3.16.6
and Exp. XXVI 4.3.1; cf. [Ti66] 1.5.1). The corresponding automorphism sG ∈ Aut (D) is induced
by the automorphism α 7→ −w0(α) of the root system Φ of G0, where w0 is the unique element of
maximal length in the Weyl group of Φ. In fact sG acts nontrivially only on irreducible components
of Φ of type An, n ≥ 2, D2n+1, n ≥ 1, or E6, where it coincides with the unique nontrivial
automorphism of the component.

The assumption that S = SpecR is connected allows us to identify DT with D, and a clopen
∗-invariant subscheme of DT with a ∗-invariant subset of D. Let J ⊆ D be the complement of the
subset corresponding to tmin. Then the Tits index of G is the pair (D, J) together with a ∗-action
on D, represented by a subgroup Γ of Aut (D). Usually we indicate Γ by writing its order as the
upper left index attached to D (for example, 2E6,

6D4 and so on). The group G is of inner type,
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if Γ = {1}. The group G is quasi-split, if J = D, and split, if it is quasi-split and the ∗-action is
trivial. When J = ∅ we say that G is anisotropic.

Exp. XXVI Prop. 1.20 implies that a parabolic subgroup is minimal if and only if its Levi
subgroup is anisotropic. The derived subgroup of the Levi subgroup is then called the anisotropic
kernel of G and denoted by Gan (it is determined uniquely up to an isomorphism).

Clearly, we have tmin = sG(tmin), since if P = Pmin is a minimal parabolic subgroup, then P−

is also minimal. Thus, if (D, J,Γ) is a Tits index, we have J = sG(J).
From now on, we fix a minimal parabolic subgroup P = Pmin of G, a Levi subgroup L of P , and

a maximal split subtorus Q of G such that L = CentG(Q), which exists by Exp. XXVI Cor. 6.11
(or by Proposition 1 (3) and descent). Let M be the lattice of characters of Q. The Lie algebra
Lie(G) of G decomposes under the action of Q into a direct sum of weight subspaces:

Lie(G) = Lie(L)⊕
⊕

α∈M\{0}

Lie(G)α.

We denote by Ψ the set of elements α ∈M \ {0} such that Lie(G)α 6= 0. By Exp. XXVI Th. 7.4
Ψ is a root system, which is called the relative root system of G with respect to Q. One readily
sees that the simple roots of Ψ correspond bijectively to the ∗-orbits contained in J .

Denote by D̂ the extended Dynkin diagram (one adds a vertex corresponding to minus the

maximal root to each irreducible component of D), and by Ĵ the union J ∪ (D̂ \D).

Lemma 3. Let G be a semisimple algebraic group over S, and let (D, J) be the Tits index of

G. Then any ∗-orbit O ⊆ Ĵ is invariant under the opposition involution of the Dynkin diagram
(D̂ \ Ĵ) ∪O.

Proof. Let A ∈ Ψ be the relative root corresponding to O (it is simple if O ⊆ J and the opposite
to the maximal otherwise). By Exp. XXVI Prop. 6.1 the subsets ZA∩Ψ and ZA∩Ψ+ correspond
to certain subgroups G′ and P ′ of G; moreover, G′ is reductive and P ′ is a parabolic subgroup of
G′ having L as a Levi subgroup. Since L is anisotropic, P ′ is a minimal parabolic subgroup of G′.
Passing to a splitting covering one sees that the Dynkin diagram of G′ is (D̂ \ Ĵ)∪O, and the type
of P ′ is given by O. The Lemma follows. �

In the next Proposition we list all possible cases when the conclusion of Lemma 3 holds for an
irreducible root system Φ. Our numbering of the vertices of Dynkin diagrams follows [B].

Proposition 3. Let Φ be a reduced irreducible root system, D the corresponding Dynkin diagram,
J 6= ∅ a subset of D and Γ a group of automorphisms of D. A triple (Φ, J,Γ) satisfies that any

Γ-orbit O ⊆ Ĵ is invariant under the opposition involution of the Dynkin diagram (D̂ \ Ĵ) ∪O, if
and only if it is, up to an automorphism of D, one in the following list:

(1) Φ = An, n ≥ 1; |Γ| = 1; J = {d, 2d, . . . , rd} for some d, r ≥ 1 such that d · (r+1) = n+1.
(2) Φ = An, n ≥ 2; |Γ| = 2; J = {d, 2d, . . . , rd, n+1− d, n+1− 2d, . . . , n+1− rd} for some

d, r ≥ 1 such that d | n+ 1, 2rd ≤ n+ 1.
(3) Φ = Bn, n ≥ 2; |Γ| = 1; J = {d, 2d, . . . , rd} for some d, r ≥ 1 such that d is even or

d = 1, rd ≤ n.
(4) Φ = Cn, n ≥ 2; |Γ| = 2; J = {d, 2d, . . . , rd} for some d, r ≥ 1 such that rd ≤ n.
(5) Φ = Dn, n ≥ 4; |Γ| = 1; J = {d, 2d, . . . , rd} for some d, r ≥ 1 such that d is even or

d = 1, rd ≤ n, rd 6= n− 1.
(6) Φ = Dn, n ≥ 4; |Γ| = 2; J = {d, 2d, . . . , rd} (or J = {d, 2d, . . . , (r − 2)d, n− 1, n} in the

case rd = n− 1) for some d, r ≥ 1 such that d is even or d = 1, rd ≤ n− 1.
(7) Φ = D4; |Γ| = 3 or |Γ| = 6; J = {2}, D.
(8) Φ = E6; |Γ| = 1; J = {2}, {1, 6}, {2, 4}, D.
(9) Φ = E6; |Γ| = 2; J = {2}, {1, 6}, {2, 4}, {1, 6, 2}, D.

(10) Φ = E7; |Γ| = 1; J = {1}, {6}, {7}, {1, 3}, {1, 6}, {1, 6, 7}, {1, 3, 4, 6}, D.
(11) Φ = E8; |Γ| = 1; J = {1}, {8}, {1, 8}, {7, 8}, {1, 6, 7, 8}, D.
(12) Φ = F4; |Γ| = 1; J = {1}, {4}, {1, 4}, D.
(13) Φ = G2; |Γ| = 1; J = {2}, D.

Proof. If Φ is an exceptional root system or D4, the result is verified by an easy try-out. Consider
the case Φ = An, |Γ| = 1. The opposition involution of An is the non-trivial automorphism of D,



TITS INDICES OVER SEMILOCAL RINGS 9

hence if |J | = 1 then n = 2k + 1 and J = {k + 1}, the middle vertex. Proceeding by induction
on |J |, we see that J = {d, 2d, . . . , rd} for some d ≥ 1 such that d|n+ 1, d · (r + 1) = n+ 1, and
any such J is valid. If |Γ| = 2 then since J is Γ-invariant, J contains a vertex k if and only if it
contains n+1− k; the opposition involution condition implies that J = {d, 2d, . . . , rd}∪{n+1−
d, n+ 1− 2d, . . . , n+ 1− rd}, and any such J is valid.

Now consider the case Φ = Bn, Cn, Dn and |Γ| = 1. Let J = {i1, i2, . . . , ir}, i1 < i2 < . . . < ir.
If Φ = Dn and ir > n− 2, we may assume ir = n applying an automorphism of D. Then J \ {ir}
lies in the connected component of D \ {ir} of type Air−1. Since J \ {ir} satisfies the opposition
involution condition, by the An case J \ {ir} is of the form {d, 2d, . . . , (r − 1)d} for some d ≥ 1
such that ir = rd. Therefore, J = {d, 2d, . . . , rd}, as required. If Φ = Cn, this finishes the proof,
since any such J satisfies the opposition involution condition. If Φ = Dn or Bn, such J does not
satisfy the opposition involution condition for O = Ĵ \ J if d is odd > 1, so this case is excluded.
The case Φ = Dn, |Γ| = 2 is verified analogously. �

6. Tits indices

We now start the classification of semisimple algebraic groups over S = SpecR, where R is a
connected semilocal ring. The problem allows two immediate reductions. First, every semisimple
group G is completely determined by its root datum and the corresponding simply connected group
Gsc, so we can assume that G is simply connected.

Second, if the Dynkin diagram D of G is not connected (that is, the root system is not irre-
ducible), we can present D as the disjoint union of its isotypic components Dt (it means that we
collect isomorphic components together), and then we have a canonical decomposition G ≃

∏
Gt,

where Gt is a group over S with the Dynkin diagram Dt (Exp. XXIV Prop. 5.5). Further, if Dt is
the disjoint union of nt copies of a connected graph D0, t, there exists a canonical étale extension
St/S of degree nt and a group G0, t over St such that Gt ≃ RSt/S(G0, t) (Exp. XXIV Prop. 5.9).
So we can assume that D is connected, that is, G is a simple algebraic group.

Our reasoning will be based on Theorem 2, which implies that a semisimple algebraic group
G is determined, up to an isomorphism, by the quasi-split group Gqs, the type tmin = D \ J of
a minimal parabolic subgroup, and the anisotropic kernel Gan subject to certain conditions on
the Tits algebras. In its turn, Gqs is determined by the Dynkin diagram D and the ∗-action on
it. Thus the classification consists in listing all possible Tits indices of simple algebraic groups,
and, for any given index, the conditions on the corresponding anisotropic kernels. The necessary
combinatorial restriction on a Tits index stated in Lemma 3 reduces possibilities to those listed
in Proposition 3. For some of them conditions on the Tits algebras lead to a contradiction; for
the rest they give criteria that anisotropic kernels must satisfy. Whenever it does not require any
extra technique, we describe isomorphism classes of admissible anisotropic kernels in terms of more
intuitive algebraic structures, like Azumaya algebras over R or étale extensions R′/R of a given
degree.

We represent Tits indices graphically by Dynkin diagramsD with the vertices in J being circled;
nontrivial ∗-action is indicated by arrows←→. We also use the Tits notation mXk

n,r for the groups
of specific indices (see [Ti66]). Unless explicitly stated otherwise, E denotes an Azumaya algebra
over R.

We begin with simple groups of type An. The split simple simply connected group of type
An over R is SLn+1(R); the corresponding adjoint group is PGLn+1(R) = Aut (Mn+1(R)). So
the simple simply connected groups of inner type An are of the form SL1(A), where A is an
Azumaya algebra over R of degree n+ 1, uniquely determined up to an isomorphism. Obviously
A is the Tits algebra of SL1(A) corresponding to the natural representation of SLn+1(R) in Rn+1;
so [A] = βSL1(A)(ω1).

Lemma 4. Assume that SL1(E) and SL1(E
′) are anisotropic, and [E] = [E′] in Br(R). Then

E ≃ E′.

Proof. Since projective modules over R are free, [E] = [E′] means that Mn(E) ≃Mm(E′) for some
n and m. Consider the simple group G = SLn(E) ≃ SLm(E′). Then SL1(E)n and SL1(E

′)m are
both anisotropic kernels of G, so they are isomorphic. In particular, they have the same type, that
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is m = n and the degrees of E and E′ are equal. This implies E ≃ E′ by [K, Ch. III Prop. 5.2.3
2)]. �

Theorem 3 (1An). Every simple simply connected group G of inner type An over R is isomorphic
to SLr+1(E) for a uniquely determined r ≥ 0 and an Azumaya algebra E over R such that SL1(E)
is anisotropic. The Tits index of G is (1An, J), where J = {d, 2d, . . . , rd}, d is the degree of E
and n+ 1 = (r + 1)d:

(1A
(d)
n, r) • • '&%$ !"#• • • '&%$ !"#• • • '&%$ !"#• • •

d 2d rd

Proof. Let (1An, J) be the Tits index of G; we have J = {d, 2d, . . . , rd} for some d with n+ 1 =
(r + 1)d by Lemma 3 and Proposition 3. The anisotropic kernel Gan is isomorphic to SL1(E1) ×
. . . SL1(Er+1) for some Azumaya algebras E1, . . . , Er. The Cartan matrix of An shows that
αi·d = 2ωi·d − ωi·d−1 − ωi·d+1 for i = 1, . . . , r. By Theorem 2, we have

0 = βGan(α′
i·d) = βSL1(Ei)(ω1)− βSL1(Ei+1)(ω1) = [Ei]− [Ei+1].

Now Lemma 4 implies that all Ei are isomorphic. Set E = E1; then SLr+1(E) has the same
Tits index and the same anisotropic kernel as G, so by Theorem 2 we have G ≃ SLr+1(E), as
claimed. �

The above result implies that for any Azumaya algebra A over R, the group G = SL1(A) is
isomorphic to SLr+1(E), where E is an Azumaya algebra such that SL1(E) is anisotropic. In this
case the degree of E is called the index of A and is denoted by indA; obviously indA divides
degA. The exponent expA of A is the order of [A] in Br(R). We will need the following result:

Proposition 4. Let A be an Azumaya algebra. Then expA divides indA, and they have the same
prime factors.

Proof. The first part follows from the fact that [A] = [E] = βSL1(E)(ω1), and (degE)ω1 belongs to
the root lattice of SL1(A). The second part follows from [Gab, Ch. II, Thm. 1]. �

Let R′/R be an étale extension of degree n. We can interpret the corestriction homomor-
phism coresR′/R : Br(R′) → Br(R) as follows. If A is an Azumaya algebra over R′ of degree d,
RR′/R(SL1(A)) is a group of type nAd−1 over R, with the ∗-action permuting the copies of Ad−1.
Now coresR′/R([A]) = βRR′/R(SL1(A))(ω), where ω is the sum of the fundamental weights ω1 of all

copies of Ad−1 (cf. [Ti71, § 5.3]).

Theorem 4 (2An). Every simple simply connected group G of type 2An over R has the Tits index
(2An, J), where J = {d, 2d, . . . , rd, n+ 1− rd, . . . , n+ 1− 2d, n+ 1− d} for some r ≥ 0, d > 0
such that d | n+ 1, 2rd ≤ n+ 1:

(2A
(d)
n, r)
• • '&%$ !"#• ss ++• • '&%$ !"#• uu ))• • • • '&%$ !"#• • • '&%$ !"#• • •

d rd n+ 1− rd n+ 1− d

Isomorphism classes of groups of a given index bijectively correspond to isomorphism classes of:

• simple simply connected anisotropic groups H of type 2An−2rd over R with βHO (ω1) = [E],
indE = d, where O is the orbit corresponding to {1, n− 2rd}, when n− 2rd ≥ 2;
• pairs consisting of an Azumaya algebras A over R and a connected quadratic étale extension
R′/R such that indA = degA = 2 and indAR′ = d, when n− 2rd = 1;
• Azumaya algebras E over a connected quadratic étale extension R′/R with indE = degE =
d and coresR′/R([E]) = 0, when n− 2rd ≤ 0.

Proof. Let (2An, J) be the Tits index of G; we have J = {d, 2d, . . . , rd, n+ 1− rd, . . . , n+ 1−
2d, n+ 1 − d} for some r ≥ 0, d > 0 with d | n+ 1, 2rd ≤ n+ 1 by Lemma 3 and Proposition 3.
The anisotropic kernel Gan is isomorphic to H1 × . . . × Hr × H , where Hi are groups of outer
type Ad−1 + Ad−1 with the ∗-action permuting two summands, and H is a group of outer type
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2An−2rd when n − 2rd ≥ 2, is isomorphic to SL1(A) for some Azumaya algebra A over R with
indA = degA = 2 when n − 2rd = 1, and is trivial otherwise. Over a quadratic étale extension
R′/R every Hi becomes inner, hence we have Hi ≃ RR′/R(SLr(Ei)) for some Azumaya algebra Ei

over R′, indEi = degEi = d.
Denote the orbit corresponding to {i · d, n+ 1 − i · d} by Oi, i = 1, . . . , r. The Cartan matrix

of An shows that αi·d = 2ωi·d − ωi·d−1 − ωi·d+1. When i < r, by Theorem 2 we have

0 = β(Gan)Oi
(α′

Oi
) = βSL1(Ei)(ω1)− βSL1(Ei+1)(ω1) = [Ei]− [Ei+1].

Lemma 4 implies now that all Ei are isomorphic; we set E = E1.
In the case n− 2rd ≥ 2 by Theorem 2 we have

0 = β(Gan)Or
(α′

Or
) = βSL1(E)(ω1)− βHOr

(ω1) = [E]− βHOr
(ω1).

In the case n− 2rd = 1 we have

0 = β(Gan)Or
(α′

Or
) = βSL1(E)(ω1)− βSL1(A)Or

(ω1) = [E]− [AR′ ],

for Or ≃ SpecR′ as a scheme.
In the case n− 2rd = 0 we have

0 = β(Gan)Or
(α′

Or
) = βSL1(E)(ω1) = [E],

hence E ≃ R′. G is quasi-split in this case.
Finally, in the case n− 2rd = −1 we have Or ≃ SpecR, and hence

0 = βGan(α′
Or

) = coresR′/R(βSL1(E)(ω1)) = coresR′/R([E]).

�

Theorem 3 (Bn). Every simple simply connected group of type Bn over R, n ≥ 2, has the Tits
index (Bn, J), where J = {1, 2, . . . , r} for some r ≥ 0:

(Bn, r) '&%$ !"#• '&%$ !"#• • • +3 •

1 r

Isomorphism classes of groups of a given index bijectively correspond to isomorphism classes of:

• simple simply connected anisotropic groups of type Bn−r over R, when n− r ≥ 2;
• Azumaya algebras A over R with indA = degA = 2, when n− r = 1.

If n = r then G is split.

Proof. Let (Bn, J) be the Tits index of G ; we have J = {d, 2d, . . . , rd} for some r ≥ 0, d >
0 with rd ≤ n by Lemma 3 and Proposition 3. The anisotropic kernel Gan is isomorphic to
SL1(E1)× . . .SL1(Er)×H , where H is a group of type Bn−rd when n− rd ≥ 2, is isomorphic to
SL1(A) for some Azumaya algebra A over R with indA = degA = 2 when n− rd = 1, or is trivial
when n = rd.

In the case n − rd ≥ 2 the Cartan matrix of Bn shows that αrd = 2ωrd − ωrd−1 − ωrd+1. By
Theorem 2, we have

0 = βGan(α′
rd) = βSL1(Er)(ω1)− βH(ω1) = [Er ].

So Er = R, hence d = 1.
In the case n− rd = 1 we have αrd = 2ωn−1 − ωn−2 − 2ωn, so

0 = βGan(α′
rd) = βSL1(Er)(ω1)− 2βH(ω1) = [Er],

and again d = 1.
Finally, in the case n = rd we have αrd = 2ωn − ωn−1, so

0 = βGan(α′
rd) = βSL1(Er)(ω1) = [Er],

d = 1, and G is split in this case. �

The split simple simply connected group scheme of type Cn over R is Sp2n(R).

Proposition 5. Assume that G is a simple simply connected group of type Cn over R, βG(ω1) =
[E], indE = d. Then d = 2k for some k ≥ 0 and d | 2n. If d = 1 then G is split.
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Proof. We have 2[E] = 0, since 2ω1 belongs to Λr. Now Proposition 4 implies that d = 2k.
The vector representation ρ : Sp2n(R)→ GL(R2n) is center preserving and has a weight ω1; so

[Aρ] = [E]. But Aρ has degree 2n, so d | 2n.

If d = 1 then by Proposition 2 G corresponds to an element of H1(R, Sp2n), and the latter is
trivial by [K, Ch. I, Cor. 4.1.2]. �

Theorem 3 (Cn). Every simple simply connected group G of type Cn over R, n ≥ 2, has the Tits
index (Cn, J), where J = {d, 2d, . . . , rd} for some r ≥ 0, d > 0 such that d = 2k | 2n, rd ≤ n,
and r = n when d = 1:

(C
(d)
n, r) • • '&%$ !"#• • • '&%$ !"#• • • ks •

d rd

Isomorphism classes of groups of a given index bijectively correspond to isomorphism classes of:

• simple simply connected anisotropic groups H of type Cn−rd over R with βH(ω1) = [E],
indE = d, when n− rd ≥ 2;
• Azumaya algebras E over R with indE = degE = d and expE ≤ 2, when n− rd ≤ 1.

Proof. Let (Cn, J) be the Tits index of G; we have J = {d, 2d, . . . , rd} for some r ≥ 0, d >
0 with rd ≤ n by Lemma 3 and Proposition 3. The anisotropic kernel Gan is isomorphic to
SL1(E1)× . . . SL1(Er)×H , where H is a group of type Cn−rd when n− rd ≥ 2, is isomorphic to
SL1(A) for some Azumaya algebra A over R with indA = degA = 2 when n− rd = 1, or is trivial
when n = rd.

The Cartan matrix of Cn shows that αi·d = 2ωi·d − ωi·d−1 − ωi·d+1 for i = 1, . . . , r − 1. By
Theorem 2, we have

0 = βGan(α′
i·d) = βSL1(Ei)(ω1)− βSL1(Ei+1)(ω1) = [Ei]− [Ei+1].

Lemma 4 implies now that all Ei are isomorphic; set E = E1. Note that [E] = βG(ω1), hence by
Proposition 5 d = 2k | 2n, and G is split when d = 1.

In the case n− rd ≥ 2 the Cartan matrix of Cn shows that αrd = 2ωrd − ωrd−1 − ωrd+1, so

0 = βGan(α′
rd) = βSL1(E)(ω1)− βH(ω1) = [E]− βH(ω1).

In the case n− rd = 1 we have αm = 2ωn−1 − ωn−2 − ωn, so

0 = βGan(α′
rd) = βSL1(E)(ω1)− βSL1(A)(ω1) = [E]− [A].

Hence [E] = [A] and d = 2.
Finally, in the case n = rd we have αm = 2ωn − 2ωn−1, so

0 = βGan(α′
rd) = 2βSL1(E)(ω1) = 2[E],

that is expE ≤ 2. �

The split simple simply connected group scheme of type Dn over R is Spin2n(R).

Proposition 6. Assume that G is a simple simply connected group of type 1Dn or 2Dn over R,
n ≥ 4, βG(ω1) = [E], indE = d. Then d = 2k for some k ≥ 0 and d | 2n.

Proof. We have 2[E] = 0, since 2ω1 belongs to Λr. Now Proposition 4 implies that d = 2k.
The vector representation ρ : Spin2n(R) → GL(R2n) is center preserving and has a weight ω1;

so [Aρ] = [E]. But Aρ has degree 2n, so d | 2n. �

Theorem 3 (1Dn). Every simple simply connected group G of inner type Dn over R, n ≥ 4, has
the Tits index (1Dn, J), where J = {d, 2d, . . . , rd} (possibly, after interchanging n− 1 and n) for
some r ≥ 0, d > 0 such that d = 2k | 2n, rd ≤ n, n 6= rd+ 1:

(1D
(d)
n, r) •

• • '&%$ !"#• • • '&%$ !"#• • •
ooooo

NNNNN

d rd •

Isomorphism classes of groups of a given index bijectively correspond to isomorphism classes of:
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• simple simply connected anisotropic groups H of inner type Dn−rd over R with βH(ω1) =
[E], indE = d, when n− rd ≥ 4;
• Azumaya algebras A over R with indA = degA = 4 and 2[A] = [E], indE = d, when
n− rd = 3;
• pairs of Azumaya algebras A1 and A2 over R with indA1 = degA1 = indA2 = degA2 = 2

and [A1] + [A2] = [E], indE = d, when n− rd = 2;
• Azumaya algebras E over R with indE = degE = d and expE ≤ 2, when n = rd.

Proof. Let (1Dn, J) be the Tits index of G; we have J = {d, 2d, . . . , rd} for some r ≥ 0, d > 0 with
rd ≤ n, rd 6= n − 1 by Lemma 3 and Proposition 3. The anisotropic kernel Gan is isomorphic to
SL1(E1)×. . .SL1(Er)×H , whereH is a group of inner typeDn−rd when n−rd ≥ 4, is isomorphic to
SL1(A) for some Azumaya algebra A over R with indA = degA = 4 when n−rd = 3 is isomorphic
to SL1(A1)×SL1(A2) for some Azumaya algebras A1, A2 over R with indA1 = degA1 = indA2 =
degA2 = 2, or is trivial when n = rd.

The Cartan matrix of Dn shows that αi·d = 2ωi·d − ωi·d−1 − ωi·d+1 for i = 1, . . . , r − 1. By
Theorem 2, we have

0 = βGan(α′
i·d) = βSL1(Ei)(ω1)− βSL1(Ei+1)(ω1) = [Ei]− [Ei+1].

Lemma 4 implies now that all Ei are isomorphic; set E = E1. Note that [E] = βG(ω1), hence by
Proposition 6 d = 2k | 2n.

In the case n− rd ≥ 4 the Cartan matrix of Dn shows that αrd = 2ωrd − ωrd−1 − ωrd+1, so

0 = βGan(α′
rd) = βSL1(E)(ω1)− βH(ω1) = [E]− βH(ω1).

In the case n− rd = 3 we still have αrd = 2ωrd − ωrd−1 − ωrd+1, so

0 = βGan(α′
rd) = βSL1(E)(ω1)− βSL1(A)(ω2) = [E]− 2[A].

In the case n− rd = 2 we have αrd = 2ωn−2 − ωn−3 − ωn−1 − ωn, so

0 = βGan(α′
rd) = βSL1(E)(ω1)− βSL1(A1)(ω1)− βSL1(A1)(ω2) = [E]− [A1]− [A2].

Finally, in the case n = rd we have αrd = 2ωn − ωn−2, so

0 = βGan(α′
rd) = βSL1(E)(ω2) = 2[E],

hence expE ≤ 2. �

Theorem 3 (2Dn). Every simple simply connected group G of type 2Dn, n ≥ 4, has the Tits index
(2Dn, J), where J = {d, 2d, . . . , rd} for some r ≥ 0, d > 0 such that d = 2k | 2n, rd < n− 1, or
J = {d, 2d, . . . , (r − 1)d, n− 1, n} for some r ≥ 0, d ∈ {1, 2} such that rd = n− 1.

(2D
(d)
n, r) • WW

��
• • '&%$ !"#• • • '&%$ !"#• • •

ooooo

NNNNN

d rd •

Isomorphism classes of groups of a given index bijectively correspond to isomorphism classes of:

• simple simply connected anisotropic groups H of type 2Dn−rd over R with βH(ω1) = [E],
indE = d, when n− rd ≥ 4;
• simple simply connected anisotropic groups H of type 2A3 over R with βH(ω2) = [E],

indE = d, when n− rd = 3;
• Azumaya algebras A over a connected quadratic étale extension R′/R with indA = degA =

2 and coresR′/R([A]) = [E], indE = d, when n− rd = 2;
• pairs consisting of an Azumaya algebra E over R with indE = degE = d and a connected

quadratic étale extension R′/R such that [ER′ ] = 0, when n− rd = 1.

Proof. Let (2Dn, J) be the Tits index of G; by Lemma 3 and Proposition 3 we have J =
{d, 2d, . . . , rd} (or J = {d, 2d, . . . , (r − 2)d, n − 1, n} in the case rd = n − 1) for some r ≥ 0,
d > 0 with rd 6= n − 1. The anisotropic kernel Gan is isomorphic to SL1(E1) × . . .SL1(Er) ×H ,
where H is a group of type 2Dn−rd when n− rd ≥ 4, of type 2A3 when n− rd = 3, is isomorphic
to RR′/R(SL1(A)) for some Azumaya algebras A over a connected quadratic étale extension R′/R
with indA = degA = 2, or is trivial when n− rd = 1.
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Denote the orbit corresponding to {i · d, n+ 1 − i · d} by Oi, i = 1, . . . , r. The Cartan matrix
of Dn shows that αi·d = 2ωi·d − ωi·d−1 − ωi·d+1 for i = 1, . . . , r − 1. By Theorem 2, we have

0 = β(Gan)Oi
(α′

Oi
) = βSL1(Ei)(ω1)− βSL1(Ei+1)(ω1) = [Ei]− [Ei+1].

Lemma 4 implies now that all Ei are isomorphic; set E = E1. Note that [E] = βG(ω1), hence by
Proposition 6 d = 2k | 2n.

In the case n− rd ≥ 4 the Cartan matrix of Dn shows that αrd = 2ωrd − ωrd−1 − ωrd+1, so

0 = β(Gan)Or
(α′

Or
) = βSL1(E)(ω1)− βH(ω1) = [E]− βH(ω1).

In the case n− rd = 3 we still have αrd = 2ωrd − ωrd−1 − ωrd+1, so

0 = β(Gan)Or
(α′

Or
) = βSL1(E)(ω1)− βH(ω2).

In the case n− rd = 2 Or ≃ SpecR, and we have αrd = 2ωn−2 − ωn−3 − ωn−1 − ωn, so

0 = β(Gan)Or
(α′

Or
) = βSL1(E)(ω1)− coresR′/R(βSL1(A)(ω1)) = [E]− coresR′/R([A]).

Finally, in the case n− rd = 1 the condition d|2n implies d ∈ {1, 2}; also, Or ≃ SpecR′, and we
have αrd = 2ωn − ωn−2, so

0 = β(Gan)Or
(α′

Or
) = βSL1(E)Or

(ω1) = [ER′ ].

�

Theorem 3 (3D4 and 6D4). Every simple simply connected group G of type 3D4 or 6D4 over R
has one of the following Tits indices:

(3D28
4, 0,

6D28
4, 0)

•

��

•

**

TT •

					

55
55

5

•

• __

��

•




**

TT

44

•

					

55
55

5

•

(3D9
4, 1,

6D9
4, 1)

•

��

•

**

TT
'&%$ !"#•

						

55
55

55

•

• __

��

•




**

TT

44

'&%$ !"#•

						

55
55

55

•

(3D2
4, 2,

6D2
4, 2)

'&%$ !"#•

��

'&%$ !"#•

**

TT '&%$ !"#•

						

55
55

55

'&%$ !"#•

'&%$ !"#• ``

��

'&%$ !"#•




**

TT

44

'&%$ !"#•

						

55
55

55

'&%$ !"#•

Isomorphism classes of groups of a given index bijectively correspond to isomorphism classes of:

• Azumaya algebras A over a connected cubic cyclic (resp., noncyclic) étale extension R′/R
with indA = degA = 2 and coresR′/R([A]) = 0, in the case of 3D9

4, 1 (resp., 6D9
4, 1);

• connected cubic cyclic (resp., noncyclic) étale extensions R′/R, in the case of 3D2
4, 2 (resp.,

6D2
4, 2).

Proof. By Lemma 3 and Proposition 3 G is anisotropic or quasi-split, or has the Tits index 3D9
4, 1

or 6D9
4, 1. Quasi-split groups are obviously in one-to-one correspondence with connected cubic étale

extensions R′/R.
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Let the Tits index be 3D9
4, 1 or 6D9

4, 1. The anisotropic kernelGan is isomorphic toRR′/R(SL1(A))
for some Azumaya algebra over a connected cubic étale extension R′/R with indA = degA = 2.
The Cartan matrix of D4 shows that α2 = 2ω2 − ω1 − ω3 − ω4, so by Theorem 2 we have

0 = βGan(α′
2) = − coresR′/R(βSL1(A)(ω1)) = − coresR′/R([A]).

�

Theorem 3 (1E6). Every simple simply connected group G of inner type E6 over R has one of
the following Tits indices:

(1E78
6, 0) • • • • •

•

(1E28
6, 2)

'&%$ !"#• • • • '&%$ !"#•

•

(1E16
6, 2) • • '&%$ !"#• • •

'&%$ !"#•

(1E0
6, 6)

'&%$ !"#• '&%$ !"#• '&%$ !"#• '&%$ !"#• '&%$ !"#•

'&%$ !"#•

Isomorphism classes of groups of a given index bijectively correspond to isomorphism classes of:

• simple simply connected anisotropic groups H of type D4 over R with βH = 0, in the case
of 1E28

6, 2;

• Azumaya algebras A over R with indA = degA = 3, in the case of 1E16
6, 2.

The only group of index 1E0
6, 6 is split.

Proof. By Lemma 3 and Proposition 3 the Tits index of G is either one of the listed above or the
following:

• • • • •

'&%$ !"#•

Let us first exclude the latter case. The anisotropic kernel Gan is isomorphic to SL1(A) for
some Azumaya algebra A over R with indA = degA = 6. The Cartan matrix of E6 shows that
α2 = 2ω2 − ω4. By Theorem 2 we have

0 = βGan(α′
2) = −βSL1(A)(ω3) = −3[A].

Hence expA = 3, but this contradicts Proposition 4.
In the case of 1E28

6, 2 the anisotropic kernel Gan is of type 1D4. We have α1 = 2ω1 − ω3,
α6 = 2ω6 − ω5, so

0 = βGan(α′
1) = −βGan(ω1);

0 = βGan(α′
6) = −βGan(ω4).

It follows that βGan = 0.
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In the case of 1E16
6, 2 the anisotropic kernel Gan is isomorphic to SL1(A1) × SL1(A2) for some

Azumaya algebras A1, A2 over R with indA1 = degA1 = indA2 = degA2 = 3. We have
α4 = 2ω4 − ω2 − ω3 − ω5, so

0 = βGan(α′
4) = βSL1(A1)(ω1)− βSL1(A2)(ω1) = [A1]− [A2].

By Lemma 4 A1 ≃ A2. �

Theorem 3 (2E6). Every simple simply connected group G of type 2E6 over R has one of the
following Tits indices:

(2E78
6, 0) • ww ''• • • •

•

(2E35
6, 1) • ww ''• • • •

'&%$ !"#•

(2E29
6, 1)

'&%$ !"#• ww ''• • • '&%$ !"#•

•

(2E16′

6, 2)
'&%$ !"#• ww ''• • • '&%$ !"#•

'&%$ !"#•

(2E16′′

6, 2 ) • ww ''• '&%$ !"#• • •

'&%$ !"#•

(2E2
6, 4)

'&%$ !"#• ww '''&%$ !"#• '&%$ !"#• '&%$ !"#• '&%$ !"#•

'&%$ !"#•

Isomorphism classes of groups of a given index bijectively correspond to isomorphism classes of:

• simple simply connected anisotropic groups H of type 2A5 over R with βH(ω3) = 0, in the
case of 2E35

6, 1;

• simple simply connected anisotropic groups H of type 2D4 over R with βHO (ω3) = 0, where
O is the orbit corresponding to {3, 4}, in the case of 2E29

6, 1;

• simple simply connected anisotropic groups H of type 2A3 over R with βH(ω2) = 0 and

βHO (ω1) = 0, where O is the orbit corresponding to {1, 3}, in the case of 2E16′

6, 2;
• Azumaya algebras A over a connected quadratic étale extension R′/R with indA = degA =

3 and coresR′/R([A]) = 0, in the case 2E16′′

6, 2 ;

• connected quadratic étale extensions R′/R, in the case of 2E2
6, 4.
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Proof. By Lemma 3 and Proposition 3 the Tits index of G is one of the listed above.
In the case of 2E35

6, 1 the anisotropic kernel Gan is a group of type 2A5. The Cartan matrix of
E6 shows that α2 = 2ω2 − ω4. By Theorem 2 we have

0 = βGan(α′
2) = −βGan(ω3).

In the case of 2E29
6, 1 the anisotropic kernel Gan is a group of type 2D4. Denote by O the orbit

corresponding to {1, 6}. We have α1 = 2ω1 − ω2, so

0 = βGanO
(α′

O) = −βGanO
(ω3).

In the case of 2E16′

6, 1 the anisotropic kernel Gan is a group of type 2A3. We have α1 = 2ω1−ω2,
α2 = 2ω2 − ω4, so

0 = βGanO
(α′

O) = −βGanO
(ω1);

0 = βGan(α′
4) = −βGan(ω2).

In the case of 2E16′′

6, 1 the anisotropic kernel Gan is isomorphic to RR′/R(SL1(A)), where A is an
Azumaya algebra over R′ with indA = degA = 3, O ≃ SpecR′. We have α4 = 2ω4−ω2−ω3−ω5,
so

0 = βGan(α′
4) = coresR′/R(βSL1(A)(ω1)) = coresR′/R([A]).

�

Theorem 3 (E7). Every simple simply connected group G of type E7 over R has one of the
following Tits indices:

(E133
7, 0 ) • • • • • •

•

(E78
7, 1) • • • • • '&%$ !"#•

•

(E66
7, 1)

'&%$ !"#• • • • • •

•

(E48
7, 1) • • • • '&%$ !"#• •

•

(E31
7, 2)

'&%$ !"#• • • • '&%$ !"#• •

•

(E28
7, 3)

'&%$ !"#• • • • '&%$ !"#• '&%$ !"#•

•
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(E9
7, 4)

'&%$ !"#• '&%$ !"#• '&%$ !"#• • '&%$ !"#• •

•

(E0
7, 7)

'&%$ !"#• '&%$ !"#• '&%$ !"#• '&%$ !"#• '&%$ !"#• '&%$ !"#•

'&%$ !"#•

Isomorphism classes of groups of a given index bijectively correspond to isomorphism classes of:

• simple simply connected anisotropic groups H of type 1E6 over R with βH = 0, in the case
of E78

7, 1;

• simple simply connected anisotropic groups H of type 1D6 over R with βH(ω5) = 0, in the
case of E66

7, 1;

• simple simply connected anisotropic groups H of type 1D5 over R with βH(ω4) = [E],
indE = 2, in the case of E48

7, 1;

• simple simply connected anisotropic groups H of type 1D4 over R with βH(ω1) = 0 and
βH(ω3) = [E], indE = 2, in the case of E31

7, 2;

• simple simply connected anisotropic groups H of type 1D4 over R with βH = 0, in the case
of E28

7, 3;

• Azumaya algebras A over R with indA = degA = 2, in the case of E9
7, 4.

The only group of index E0
7, 7 is split.

Proof. By Lemma 3 and Proposition 3 the Tits index of G is either one of the listed above or the
following:

'&%$ !"#• '&%$ !"#• • • • •

•

Let us first exclude the latter case. The anisotropic kernel Gan is isomorphic to SL1(A) for
some Azumaya algebra A over R with indA = degA = 6. The Cartan matrix of E7 shows that
α3 = 2ω3 − ω1 − ω4. By Theorem 2 we have

0 = βGan(α′
3) = −βSL1(A)(ω2) = 2[A].

Hence expA = 2, but this contradicts Proposition 4.
In the case of E78

7, 1 the anisotropic kernel Gan is of type 1E6. We have α7 = 2ω7 − ω6, so

0 = βGan(α′
7) = −βGan(ω6).

It follows that βGan = 0.
In the case of E66

7, 1 the anisotropic kernel Gan is of type 1D6. We have α1 = 2ω1 − ω3, so

0 = βGan(α′
1) = −βGan(ω5).

In the case of E48
7, 1 the anisotropic kernel Gan is isomorphic to H ×SL1(E), where H is a group

of type 1D6, E is an Azumaya algebra over R with indE = degE = 2. We have α6 = 2ω6−ω5−ω7,
so

0 = βGan(α′
6) = −βH(ω4)− βSL1(E)(ω1) = −βH(ω4) + [E].

In the case of E31
7, 2 the anisotropic kernel Gan is isomorphic to H ×SL1(E), where H is a group

of type 1D4, E is an Azumaya algebra over R with indE = degE = 2. We have α1 = 2ω1 − ω3,
α6 = 2ω6 − ω5 − ω7, so

0 = βGan(α′
1) = −βH(ω1);

0 = βGan(α′
6) = −βH(ω3)− βSL1(E)(ω1) = −βH(ω3) + [E].
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In the case of E28
7, 3 the anisotropic kernel Gan is of type 1D4. We have α1 = 2ω1 − ω3, α6 =

2ω6 − ω5 − ω7, so

0 = βGan(α′
1) = −βGan(ω1);

0 = βGan(α′
6) = −βGan(ω3).

It follows that βGan = 0.
In the case of E28

7, 3 the anisotropic kernel Gan is isomorphic to SL1(A1)×SL1(A2)×SL1(A3) for
some Azumaya algebras A1, A2, A3 over R with indA1 = degA1 = indA2 = degA2 = indA3 =
degA3 = 2. We have α4 = 2ω4 − ω2 − ω3 − ω5, α6 = 2ω6 − ω5 − ω7, so

0 = βGan(α′
4) = −βSL1(A1)(ω1)− βSL1(A2)(ω1) = [A1]− [A2];

0 = βGan(α′
6) = −βSL1(A2)(ω1)− βSL1(A3)(ω1) = [A2]− [A3].

By Lemma 4 A1 ≃ A2 ≃ A3. �

Theorem 3 (E8). Every simple simply connected group G of type E8 over R has one of the
following Tits indices:

(E248
8, 0 ) • • • • • • •

•

(E133
8, 1 ) • • • • • • '&%$ !"#•

•

(E91
8, 1)

'&%$ !"#• • • • • • •

•

(E78
8, 2) • • • • • '&%$ !"#• '&%$ !"#•

•

(E66
8, 2)

'&%$ !"#• • • • • • '&%$ !"#•

•

(E28
8, 4)

'&%$ !"#• • • • '&%$ !"#• '&%$ !"#• '&%$ !"#•

•

(E0
8, 8)

'&%$ !"#• '&%$ !"#• '&%$ !"#• '&%$ !"#• '&%$ !"#• '&%$ !"#• '&%$ !"#•

'&%$ !"#•

Isomorphism classes of groups of a given index bijectively correspond to isomorphism classes of:

• simple simply connected anisotropic groups H of type E7 over R with βH = 0, in the case
of E133

8, 1 ;

• simple simply connected anisotropic groups H of type 1D7 over R with βH = 0, in the case
of E91

8, 1;
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• simple simply connected anisotropic groups H of type 1E6 over R with βH = 0, in the case
of E78

8, 2;

• simple simply connected anisotropic groups H of type 1D6 over R with βH = 0, in the case
of E66

8, 2;

• simple simply connected anisotropic groups H of type 1D4 over R with βH = 0, in the case
of E28

8, 4.

The only group of index E0
8, 8 is split.

Proof. By Lemma 3 and Proposition 3 the Tits index of G is one of the listed above.
In the case of E133

8, 1 the anisotropic kernel Gan is of type E7. The Cartan matrix of E8 shows
that α8 = 2ω8 − ω7. By Theorem 2 we have

0 = βGan(α′
8) = −βGan(ω7).

It follows that βGan = 0.
In the case of E91

8, 1 the anisotropic kernel Gan is of type 1D7. We have α1 = 2ω1 − ω3, so

0 = βGan(α′
1) = −βGan(ω6).

It follows that βGan = 0.
In the case of E78

8, 2 the anisotropic kernel Gan is of type 1E6. We have α7 = 2ω7 − ω6 − ω8, so

0 = βGan(α′
7) = −βGan(ω6).

It follows that βGan = 0.
In the case of E66

8, 2 the anisotropic kernel Gan is of type 1D6. We have α1 = 2ω1 − ω3, α8 =
2ω8 − ω7, so

0 = βGan(α′
1) = −βGan(ω5);

0 = βGan(α′
8) = −βGan(ω1).

It follows that βGan = 0.
In the case of E28

8, 4 the anisotropic kernel Gan is of type 1D4. We have α1 = 2ω1 − ω3, α6 =
2ω6 − ω5 − ω7, so

0 = βGan(α′
1) = −βGan(ω1);

0 = βGan(α′
6) = −βGan(ω3).

It follows that βGan = 0. �

Theorem 3 (F4). Every simple simply connected group G of type F4 over R has one of the
following Tits indices:

(F 52
4, 0) • • +3 • •

(F 21
4, 1) • • +3 • '&%$ !"#•

(F 0
4, 4)

'&%$ !"#• '&%$ !"#• +3 '&%$ !"#• '&%$ !"#•

Isomorphism classes of groups of index F 21
4, 1 bijectively correspond to isomorphism classes of

simple simply connected anisotropic groups H of type B3 over R with βH = 0. The only group of
index F 0

4, 4 is split.

Proof. By Lemma 3 and Proposition 3 the Tits index of G is either one of the listed above or one
of the following:

'&%$ !"#• • +3 • •

'&%$ !"#• • +3 • '&%$ !"#•
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Let us exclude the two latter cases. In the first of them the anisotropic kernel Gan is of type
C3. The Cartan matrix of F4 shows that α1 = 2ω1 − ω2. By Theorem 2 we have

0 = βGan(α′
1) = −βGan(ω3).

It follows that βGan = 0, in contradiction with Proposition 5.
In the second case the anisotropic kernel Gan is of type C2. We have α4 = 2ω4 − ω3, so

0 = βGan(α′
4) = −βGan(ω1).

It follows that βGan = 0, in contradiction with Proposition 5.
In the case of F 21

4, 1 Gan is of type B3. We have α4 = 2ω4 − ω3, so

0 = βGan(α′
4) = −βGan(ω3).

It follows that βGan = 0. �

Theorem 3 (G2). Every simple simply connected group G of type G2 over R has one of the
following Tits indices:

(G14
2, 0) • _jt •

(G0
2, 2)

'&%$ !"#• _jt '&%$ !"#•

The only group of index G0
2, 2 is split.

Proof. By Lemma 3 and Proposition 3 the Tits index of G is either one of the listed above or the
following:

• _jt '&%$ !"#•

We need to exclude the latter case. The anisotropic kernel Gan is isomorphic to SL1(A) for
some Azumaya algebra A over R with indA = degA = 2. The Cartan matrix of G2 shows that
α2 = 2ω2 − 3ω1. By Theorem 2 we have

0 = βGan(α′
2) = −3βSL1(A)(ω1) = −3[A].

But by Proposition 4 2[A] = 0, hence [A] = 0, a contradiction. �
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