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1 Introduction

In the present paper, we describe the normal subgroups of maximal parabolic sub-
groups of a Chevalley group over an (almost) arbitrary commutative ring. On one
hand, this is an extension of results on the internal structure of parabolic subgroups
of Chevalley groups over fields, such as of Azad, Barry and Seitz [5] and Röhrle [12–
14] (see also [10]). On the other hand, it can be considered as a first step towards the
generalization of the main structure theorem for Chevalley groups to non-reductive
algebraic groups.

To be more specific, we introduce the following notation (see also Section 2).
Let Φ be a reduced irreducible root system of rank greater than one, and R be a
commutative ring with 1. We denote by G = G(Φ, R) and E = E(Φ, R) a Cheval-
ley group of type Φ over R and its elementary subgroup, respectively. The main
structure theorem for Chevalley groups [1, 2, 4, 7, 8, 17] (see also [19] and [20]
for further references and discussion) asserts that, roughly speaking, the E(Φ, R)-
normalized subgroups of G(Φ, R) are parametrized by ideals of the ring R. Namely,
in most cases (for example, under the condition that 2 is invertible in R when
Φ = Bl, Cl, F4 and 2, 3 are invertible in R when Φ = G2, which we assume in this
paper), for any E(Φ, R)-normalized subgroup H, there exists a unique ideal I £ R
such that E(Φ, R, I) ≤ H ≤ C(Φ, R, I), where E(Φ, R, I) and C(Φ, R, I) are respec-
tively the relative elementary subgroup and the full congruence subgroup of level
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I in G. Here we prove an analogous result for the normal subgroups in maximal
parabolic subgroups of a Chevalley group. These subgroups can be described in
terms of ideals in R too, with the only difference that we assign to each subgroup
a system of ideals instead of a single ideal.

Let Pr be a maximal (standard) parabolic subgroup of a Chevalley group G(Φ, R)
corresponding to the r-th simple root of Φ. We denote by EPr the subgroup of Pr

generated by those elementary root unipotents that are contained in Pr by its def-
inition. The main goal of this paper is to describe the EPr-normalized subgroups
in Pr. Recall that the subgroup Pr can be represented as a semidirect product
Pr = Lr n Ur of its Levi subgroup Lr and its unipotent radical Ur. To obtain our
main result, we actually describe the ELr-normalized subgroups of Pr, where ELr

is the elementary subgroup of Lr.
The paper is organized as follows. In §2, we introduce the basic notation and

recall some known results. In particular, we recall one of the forms of the main
structure theorem for Chevalley groups, and prove its extension to reductive groups
(Theorem 2.3), that we use later to describe the structure of Lr. In §3, we state our
main results. In Theorem 3.1, we explicitly describe the ELr-normalized subgroups
in Ur, and Theorem 3.3 completes the description of the ELr-normalized subgroups
in Pr. The condition for an ELr-normalized subgroup to be EPr-normalized ap-
pears in Corollary 3.4. In §4, we prove some technical lemmas, mostly concerning
the structure of the unipotent radical. In §5, we prove Theorem 3.1 in all cases
except Φ = G2 and r = 1, and in §6, we investigate this special case. Finally, in §7,
we establish Theorem 3.3.

2 Preliminaries

Let G be a group. For two elements x, y ∈ G, we denote by [x, y] = xyx−1y−1 their
commutator, by xy = y−1xy and yx = yxy−1 the conjugates of x by y and y−1,
respectively. We will use relations [xy, z] = x[y, z] · [x, z] and [x, yz] = [x, y] · y[x, z]
without any further reference. We write H ≤ G to denote that H is a subgroup of
G and H £ G to denote that H is a normal subgroup of G. For a subset X ⊆ G,
we denote by 〈X〉 the subgroup of G generated by X, and by 〈X〉H the smallest
overgroup of X normalized by H ⊆ G. For two subgroups F, H ≤ G, we denote
by [F, H] the corresponding relative commutator subgroup, i.e., the subgroup of G
generated by all commutators [f, h] for f ∈ F and h ∈ H.

For a commutative ring R with 1, we denote by R∗ the group of its invertible
elements. We also write I £ R to signify that I is an ideal of R.

Let Φ be a reduced irreducible root system of rank l ≥ 2 in an l-dimensional
Euclidean space with the inner product ( , ). Fix a system Π = {α1, . . . , αl} of
simple roots in Φ (the labelling follows Bourbaki [6]). Then any root α ∈ Φ can be
uniquely expressed as α =

∑l
r=1 mr(α)αr. The integer mr(α) is called the r-level

of α and the sum
∑l

r=1 mr(α) is called the height of α. We denote by α̃ the unique
root of maximal height in Φ. We also write Φ+ and Φ− for the sets of positive and
negative roots, respectively.

We denote by G = G(Φ, R) a Chevalley group of type Φ over a commutative
ring R with identity, i.e., the group of R-points of the corresponding Chevalley–
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Demazure group scheme. We fix a split maximal torus T = T (Φ, R) of G. We also
write E = E(Φ, R) for the elementary subgroup of G, and Gad = Gad(Φ, R) and
Ead = Ead(Φ, R) for the adjoint groups of the corresponding type.

The elementary subgroup E = E(Φ, R) is generated by all unipotent root ele-
ments xα(ξ) for α ∈ Φ and ξ ∈ R. With any additive subgroup A in R, we associate
the following subgroups of E: Xα(A) = {xα(ξ) | ξ ∈ A} for all α ∈ Φ (we also write
Xα for Xα(R)) and E(Φ, A) = 〈xα(ξ) |α ∈ Φ, ξ ∈ A〉. When A = I is an ideal in R,
we denote by E(Φ, R, I) the relative elementary subgroup E(Φ, I)E(Φ,R) of level I.

Unless explicitly stated otherwise, we suppose that the ring R satisfies

NVB

{
2 ∈ R∗ when Φ = Bl, Cl, F4,

2, 3 ∈ R∗ when Φ = G2,

that is, all constants in the Chevalley commutator relations are invertible.
A subset S of Φ is called a (standard) parabolic subset if it is closed under

addition and contains Φ+. The maximal parabolic subsets are precisely the sets
Sr = {α ∈ Φ |mr(α) ≥ 0} for 1 ≤ r ≤ l. Any Sr can be written as a disjoint union
Sr = ∆r ∪ Σr, where Σr = {α ∈ Φ+ |mr(α) > 0} and ∆r = {α ∈ Φ |mr(α) = 0}.

For a fixed r, we set ∆±
r = ∆r ∩ Φ± and Σr(m) = {α ∈ Φ+ |mr(α) = m} for

any 0 ≤ m ≤ mr(α̃). We introduce on Σr(m) the following partial order:

α ≺ β if there exist β1, β2, . . . , βn ∈ ∆+
r such that α + β1 + · · ·+ βn = β.

We call a linear order ≤ on Φ+ level-adapted (with respect to the fixed r) if α < β
when mr(α) < mr(β) or mr(α) = mr(β) and α ≺ β.

It is well known (see, for example, [5]) that in Σr(m), there exists a unique root
of minimal height. By the same token, there exists a unique root of maximal height,
which we denote α̃m. We summarize some other properties of roots proved in [10]
in the following lemma.

Lemma 2.1. [10, Lemmas 1–4] Let αr ∈ Π.

(i) For any 1 ≤ m ≤ mr(α̃), there exists a unique root α̃m ∈ Σr(m) maximal
with respect to ≺.

(ii) If one of the following holds:
• Φ 6= Al, αr is the unique simple root joined with −α̃ in the extended

Dynkin diagram of Φ, and m = mr(α̃) = 2,
• Φ = G2, αr = α1, and m = 2,

then |Σr(m)| = 1. Otherwise, |Σr(m)| ≥ 2.

(iii) For any 1 ≤ m 6= n ≤ mr(α̃), one has α̃m − α̃n ∈ Φ.

(iv) For any 1 ≤ m 6= n ≤ mr(α̃) except m = 1 and n = 3 in the case when
Φ = G2 and αr = α1, there exists β ∈ ∆−

r such that exactly one of α̃m + β,
α̃n + β is a root.

With any closed set S ⊆ Φ, one can associate the subgroup E(S) = E(S,R) =
〈xα(ξ) | ξ ∈ R, α ∈ S〉 of E = E(Φ, R). We denote E(Sr) by EPr. It follows
directly from the Chevalley commutator relations that EPr can be represented as
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the semidirect product EPr = ELr n Ur of its unipotent radical Ur = E(Σr) and
its Levi subgroup ELr = E(∆r). We will use the fact that any element u ∈ Ur can
be written in the form u =

∏
xα(uα), where the product is taken over all roots in

Σr in a level-adapted order. For any m ≥ 1, we set

Um
r = E({α ∈ Φ |mr(α) ≥ m}) = 〈xα(ξ) | ξ ∈ R, α ∈ Σr(k), k ≥ m〉.

For any closed set of roots S, there exists also a natural algebraic subgroup
G(S) = G(S,R) of G corresponding to S (see [9] and [21]). When S = Sr is a
maximal parabolic set of roots, we denote this subgroup by Pr and call it a maximal
parabolic subgroup of G(Φ, R). If R = K is a field, it is just the usual r-th standard
maximal parabolic subgroup of G(Φ,K), i.e., a maximal subgroup containing the
standard Borel subgroup. In the case of a general commutative ring, however, Pr

does not have to be maximal as an abstract subgroup (see [16] and [18]).
By definition, the subgroup Pr contains EPr. It admits a Levi decomposition

Pr = Lr n Ur with the unipotent radical Ur = E(Σr, R), where Lr = G(∆r, R) is
a reductive algebraic group of type ∆r. The elementary subgroup of Lr coincides
with ELr = E(∆r, R).

A parabolic subgroup Pr is called extraspecial if the corresponding simple root
αr is the unique root joined with −α̃ in the extended Dynkin diagram of Φ.

Since our focus is on the structure of individual parabolic subgroups and not on
that of the ambient Chevalley group, we usually omit the index and write simply
P , EP , L, U etc. instead of Pr, EPr, Lr, Ur etc., keeping in mind that all these
objects correspond to the same r between 1 and l = rank Φ.

To describe the normal structure of a parabolic subgroup, we have to consider
the normal structure of its Levi subgroup, which is not a Chevalley group but
a reductive algebraic group. Below we give an extension to reductive groups of
the main structure theorem for Chevalley groups, more precisely, of the following
statement of [2]: A subgroup H of a Chevalley group G(Φ, R) is normalized by
E(Φ, R) if and only if there exists an ideal I £ R such that

E(Φ, R, I) ≤ H ≤ E∗(Φ, R, I).

Here E∗(Φ, R, I) = {x ∈ G | [x,E(Φ, R)] ⊆ E(Φ, R, I)} is actually the full congru-
ence subgroup of level I in G(Φ, R).

From now and only until the end of this section, let G = G(Ψ,−) denote a
reductive algebraic group of type Ψ, where the root system Ψ = Ψ1 + · · · + Ψn

has several irreducible components Ψi (1 ≤ i ≤ n). We use the fact (see [9, Exp.
XXII 4.3] for details) that there exists a morphism πad : G → Gad(Ψ,−) of schemes
from G to the adjoint group of same type, whose (scheme-theoretic) kernel equals
Cent(G), the group scheme centre of G. Denote the induced morphism G(R) →
Gad(Ψ, R) by πad

R . Then Cent(G)(R) = (kerπad)(R) = kerπad
R is a central subgroup

of G(R). It is also known from [9, Exp. XXII 4.3.1] that the restriction πad
R |E(Ψ,R) :

E(Ψ, R) → Ead(Ψ, R) given by xα(ξ) 7→ xad
α (ξ) is surjective. In particular, this

implies:

Lemma 2.2. Let G = G(Ψ,−) be a reductive group scheme of type

Ψ = Ψ1 + · · ·+ Ψn,
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where each Ψi is an irreducible root system of rank greater than one. Let R be
a commutative ring with 1. Let Cent(G), C(G(R)), and CG(R)(E(R)) denote the
group scheme centre of G, the abstract centre of the group G(R), and the centralizer
of the elementary group E(R) in G(R), respectively. Then

C(G(R)) = CG(R)(E(R)) = Cent(G)(R) = ker(G(R)
πad

R−→ Gad(R)).

Proof. The definition of Cent(G) implies that Cent(G)(R) ≤ C(G(R)). On the
other hand, C(G(R)) ≤ CG(R)(E(R)). Since πad

R is surjective on elementary sub-
groups, we get

πad
R (CG(R)(E(R))) ≤ CGad(R)(Ead(R)).

Since Gad(R) ∼= ∏n
i=1 Gad(Ψi, R) and Ead(R) ∼= ∏n

i=1 Ead(Ψi, R), one has

CGad(R)(Ead(R)) =
n∏

i=1

CGad(Ψi,R)(Ead(Ψi, R)).

Each Gad(Ψi, R) is a Chevalley group, therefore, we can use the main theorem of
[3], which says in particular that the centralizer of the elementary subgroup in a
Chevalley group coincides with its center and is trivial if the group is of adjoint
type. Hence,

∏n
i=1 CGad(Ψi,R)(Ead(Ψi, R)) = 1, and CG(R)(E(R)) ≤ kerπad

R , which
completes the proof. 2

Theorem 2.3. Let G = G(Ψ, R) be a reductive Chevalley–Demazure group scheme
with a root system Ψ = Ψ1+· · ·+Ψn, where each Ψi is an irreducible root system of
rank greater than one. Let R be a commutative ring with identity satisfying NVB.
Then a subgroup H of G is normalized by the elementary subgroup E = E(Ψ, R)
of G if and only if there exist ideals Ii £ R (1 ≤ i ≤ n) such that

E(I1, . . . , In) ≤ H ≤ E∗(I1, . . . , In),

where E(I1, . . . , In) =
∏n

i=1 E(Ψi, R, Ii) and E∗(I1, . . . , In) = {x ∈ G | [x,E] ⊆
E(I1, . . . , In)}.
Proof. When G is the adjoint reductive group Gad(Ψ, R) of type Ψ, we have G ∼=∏n

i=1 Gad(Ψi, R) and E ∼= ∏n
i=1 Ead(Ψi, R), and the statement follows easily from

the one for Chevalley groups. Now let G = G(Ψ, R) be an arbitrary reductive group.
For any subgroup H ≤ G normalized by E, its image πad

R (H) under the morphism
πad

R : G → Gad(Ψ, R) is normalized by Ead(Ψ, R), and therefore satisfies

n∏

i=1

Ead(Ψi, R, Ii) ≤ πad
R (H) ≤

n∏

i=1

E∗
ad(Ψi, R, Ii)

for some ideals Ii £ R (1 ≤ i ≤ n). Denote by C the centre of G(Ψ, R). Then∏n
i=1 E(Ψi, R, Ii) ≤ CH and hence

[
E,

n∏

i=1

E(Ψi, R, Ii)
]

=
n∏

i=1

E(Ψi, R, Ii) = E(I1, . . . , In) ≤ H.
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Moreover, [H, E] ≤ C ·∏n
i=1 E(Ψi, R, Ii) and thus [[H, E], E] ≤ ∏n

i=1 E(Ψi, R, Ii).
Therefore, it is enough to prove [[H, E], E] = [H, E]. We first show [H, E] ≤ E.
Observe that [[H, E], E] ≤ E implies that E ∩ [H, E] is normal in [H, E]. Further,
[[H, E], [H, E]] ≤ E ∩ [H, E] implies that the quotient group [H, E]/(E ∩ [H, E])
is abelian. For any h ∈ H, consider the map ψh : E → [H, E]/(E ∩ [H, E]) given
by x 7→ [h, x] · (E ∩ [H, E]). Since H is normalized by E, for any x, y ∈ E, we
have [h, xy] ([h, x][h, y])−1 = [[h, y−1], x] ∈ [[H, E], E] ≤ E ∩ [H, E], hence ψh is a
homomorphism. But since E = [E, E], its image under ψh must be trivial, that is,
[h, x] ∈ E ∩ [H, E] for all x ∈ E. Therefore, [H, E] = E ∩ [H, E]. Now we see that
[[H, E], [H, E]] ≤ [[H, E], E], and to prove [H, E] = [[H, E], E], it suffices to repeat
the same trick for the quotient group [H, E]/[[H, E], E]. 2

Corollary 2.4. Under the hypothesis of Theorem 2.3:
(i) E(Ψ, R) £ G(Ψ, R).
(ii) For any subgroup H of G(Ψ, R) normalized by E(Ψ, R), one has [H, E(Ψ, R)]

= E(I1, . . . , In), where I1, . . . , In £R are the ideals in the statement of The-
orem 2.3.

3 Statement of the Main Results

Recall that we have fixed some r between 1 and l = rank Φ and consider the
corresponding maximal parabolic subgroup P = Pr with the unipotent radical
U = Ur and the Levi subgroup L = Lr.

We need two more definitions to state our results. Set n = mr(α̃). We call a
collection σ = (σ1, . . . , σn) of additive subgroups in R an αr-ladder in R if

(1) σiσj ⊆ σi+j whenever 1 ≤ i, j, i + j ≤ n,
(2) σi £ R whenever |Σr(i)| ≥ 2.

We recall that by Lemma 2.1, one has |Σr(i)| = 1 only when P is extraspecial
and i = 2 = n, or when Φ = G2, P = P1 and i = 2. Hence, for the fixed r,
there exists at most one σi which is not an ideal. We assign to a ladder σ in R
the ladder subgroup U(σ) = 〈xα(ξ) |α ∈ Σr, ξ ∈ σmr(α)〉 ≤ U . In most cases, the
EL-normalized subgroups in U are exhausted by the subgroups U(σ). But in the
exceptional case of Φ = G2 and P = P1, we need a slightly larger class of subgroups
which can be described as follows.

Let Φ = G2 and P = P1. We call a pair (M, A) consisting of an R-submodule
M of the free R-module R×R and an additive subgroup A of R a coherent pair if
π1(M)2 ≤ A and {0}×π1(M)A ≤ M , where π1 is the projection of R×R onto the
first factor. For any coherent pair (M, A) we set

U(M, A) =
〈
xα1(ξ) x3α1+α2(η), xα1+α2(−ξ′) x3α1+2α2(η

′), x2α1+α2(θ) |
(ξ, η), (ξ′, η′) ∈ M, θ ∈ A

〉
.

Recall that α1 and α2 denote respectively the short and long simple roots of G2.

Theorem 3.1. Let H be a subgroup of U normalized by EL.

(i) If Φ 6= G2 or Φ = G2 and P = P2, then H = U(σ) for some αr-ladder σ
in R.
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(ii) If Φ = G2 and P = P1 corresponds to the short simple root, then H =
U(M, A) for some coherent pair (M, A).

Theorem 3.1 is an essential ingredient of the description of all EL-normalized
subgroups of P . Another major ingredient is the description of the normal structure
of the Levi subgroup L. Since L is a reductive algebraic group, we can apply Theo-
rem 2.3, which follows from the main structure theorem for Chevalley groups. Since
the main structure theorem is known only for Chevalley groups of rank greater than
one, we have to impose that all irreducible components of ∆r are of rank greater
than one. Thus, for the rest of the section, we assume that the pair (Φ, r) satisfies

NRO





r 6= 2, l − 1 when Φ = Al, Bl, Cl,

r 6= 2, l − 2 when Φ = Dl,

r 6= 3, 4, 5 when Φ = E6,

r 6= 3, 4, 6 when Φ = E7,

r 6= 3, 4, 7 when Φ = E8,

r 6= 2, 3 when Φ = F4,

Φ 6= G2.

It is easy to see that in each of these cases, ∆r consists of at most two irreducible
components. Henceforth, we write ∆r = ∆1

r + ∆2
r, allowing one of ∆1

r, ∆2
r to be

empty. We also suppose ∆1
r to be spanned by the part of Π \ {αr} that contains

simple roots with smaller indices. In particular, ∆1
r = ∅, ∆2

r = ∆r whenever r = 1.
We set

ELi = E(∆i
r, R) = 〈xα(ξ) |α ∈ ∆i

r, ξ ∈ R〉,
ELi(R, I) = E(∆i

r, R, I) = 〈xα(ξ) |α ∈ ∆i
r, ξ ∈ I〉ELi

for any I £ R and i = 1, 2.

Lemma 3.2. Suppose that all irreducible components of ∆r are of rank greater
than one (NRO). Then a subgroup H of L is normalized by EL if and only if
there exists a (unique) pair of ideals I1, I2 £ R such that

EL1(R, I1)× EL2(R, I2) ≤ H ≤ EL∗(I1, I2),

where EL∗(I1, I2) = {x ∈ L | [x,EL] ⊆ EL1(I1) × EL2(I2)}. Moreover, one has
[H, EL] = EL1(R, I1)× EL2(R, I2).

Proof. It follows directly from Theorem 2.3. 2

Now let H be an arbitrary subgroup of P normalized by EL, and let HL denote
the image of H in P/U ∼= L. Then Lemma 3.2 and Theorem 3.1 imply that there
exist a unique pair of ideals I1, I2 £ R such that EL1(R, I1)× EL2(R, I2) ≤ HL ≤
EL∗(I1, I2) and a unique αr-ladder σ in R such that H∩U = U(σ). With the above
notation, our main result looks as follows.

Theorem 3.3. Let G be a Chevalley group of type Φ over a commutative ring R
with 1 satisfying NVB. Suppose that all irreducible components of ∆r are of rank



638 A. Stavrova

greater than one, that is, NRO holds. Let H be a subgroup of P normalized by
EL.

(i) If P is not extraspecial, then H = HL n (H ∩ U), and therefore,
(
EL1(R, I1)× EL2(R, I2)

)
n U(σ) ≤ H ≤ EL∗(I1, I2)n U(σ).

(ii) If P is extraspecial, then

(
EL1(R, I1)× EL2(R, I2)

)
n U(σ) ≤ H ≤ EL∗(I1, I2)n U(σ)X

α̃
.

Conversely, any subgroup H of P satisfying the inclusions in (i) or (ii) for some
I1, I2, σ is normalized by EL.

Remark 1. In (ii), EL∗(I1, I2) does not necessarily normalize U(σ), and H does
not necessarily contain HL.

Remark 2. In view of [15], Theorem 3.1 immediately implies that the description of
EL-normalized subgroups in P is “standard” in the sense that there exists a family
of subgroups Hα such that [Hα, EL] = Hα and, for any EL-normalized subgroup
H, one has Hα ≤ H ≤ {x ∈ EP | [x,EL] ⊆ Hα} for a unique index α. However,
the methods of [15] do not allow to find Hα explicitly.

Theorem 3.3 implies the following description of the EP -normalized subgroups
in P .

Corollary 3.4. Under the hypothesis of Theorem 3.3, an EL-normalized subgroup
H of P is normalized by EP if and only if I1 + I2 ⊆ σ1 ⊆ · · · ⊆ σ

mr(α̃)
and

HL ≤ E∗(Φ, R, σ1).

4 Preliminary Lemmas

Lemma 4.1. For any α, β ∈ Φ such that α + β ∈ Φ, and any ξ ∈ R, I £ R, one

has
〈
[xα(ξ), Xβ(I)], [xα(ξ), [xα(ξ), Xβ(I)]], [xα(ξ), [xα(ξ), [xα(ξ), Xβ(I)]]]

〉Xβ(I) ≥
Xα+β(ξI).

Proof. It follows directly from the Chevalley commutator formula. Calculations
can be found in the proof of [10, Lemma 5] or [18, Lemma 1]. 2

We often use this lemma in the form 〈xα(ξ)〉Xβ(I) ≥ Xα+β(ξI).
Lemma 4.1 together with Lemma 2.1 implies the following two statements, which

give us an intuition of what an EL-normalized subgroup of U looks like when it is
generated by elementary root unipotents (in fact, all such subgroups are precisely
the ladder subgroups U(σ)).

Lemma 4.2. Let α ∈ Σr(m) for some 1 ≤ m ≤ mr(α̃), ξ ∈ R. If |Σr(m)| ≥ 2,
then 〈xα(ξ)〉EL ≥ Xγ(ξR) for all γ ∈ Σr(m).

Proof. It follows immediately from Lemma 4.1 and the existence of the unique
¹ -maximal root α̃m ∈ Σr(m) (Lemma 2.1). 2
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Lemma 4.3. Let α ∈ Σr(n) and β ∈ Σr(m) for some 1 ≤ m,n ≤ mr(α̃) such
that m + n ≤ mr(α̃). Let ξ, η ∈ R. Then 〈xα(ξ), xβ(η)〉EL ≥ Xγ(ξηR) for all
γ ∈ Σr(m + n).

Proof. Denote H = 〈xα(ξ), xβ(η)〉EL. By Lemma 2.1, at least one of Σr(n), Σr(m)
consists of more than one element, suppose that it is Σr(n) (in the case when
m = n and |Σr(m)| = 1, the inequality m + n ≤ mr(α̃) fails by Lemma 2.1). Then
X

α̃n
(ξR) ≤ H by Lemma 4.2. By Lemma 2.1, we have δ = α̃n+m − α̃n ∈ Σr(m).

If Σr(m) consists of one element, then we have δ = β and xδ(η) ∈ H, otherwise
xδ(η) ∈ H by Lemma 4.2. Since X

α̃n
(ξR) normalizes H, it follows from Lemma 4.1

that X
α̃n+δ

(ξηR) = X
α̃n+m

(ξηR) ≤ H. If Σr(n + m) has more than one element,
then we use Lemma 4.2 again to finish the proof. 2

Recall that for any 1 ≤ m ≤ mr(α̃), one has Um+1 £ Um and (Um)EL = Um.
The quotient Vm = Um/Um+1 is isomorphic to the direct product of all Xα(R),
α ∈ Σr(m), and possesses a natural structure of an R[EL]-module: the action of
EL is induced from Um, and scalars c ∈ R act as c ·xα(ξ) = xα(cξ). These modules
Vm are called internal Chevalley modules. In the case when R is a field, their
structure is very well understood (see [5, 10, 11]). In particular, in this case, all Vm

are irreducible; but this does not hold in general.
We observe that it follows from Lemma 4.1 and the existence of the unique

¹ -maximal root α̃m ∈ Σr(m) that EL acts on Vm non-trivially if and only if
|Σr(m)| ≥ 2.

Lemma 4.4. Suppose 1 ≤ m ≤ mr(α̃) and |Σr(m)| ≥ 2. Then the Z[EL]-sub-
modules of Vm are just the direct products Vm(I) =

∏
α∈Σr(m) Xα(I) for I £ R.

Proof. Let W be a Z[EL]-submodule of Vm. We will prove that u =
∏

xα(uα) ∈ W
implies xα(uα) ∈ W for all α ∈ Σr(m). Then Lemma 4.2 applied to the inverse
image of W in Um tells that W = Vm(I), where I coincides with the ideal generated
by all uα for α ∈ Σr(m) and u ∈ W . For any u =

∏
xα(uα) ∈ Vm, we set

R(u) = {α ∈ Σr(m) | ∃β ¹ α : uβ 6= 0}. We argue by induction on R(u) (with
respect to inclusion of sets). If R(u) is the least possible, i.e., R(u) = {α̃m},
the statement is trivial. Otherwise consider any ¹-minimal root α in R(u). By
Lemma 2.1, there exists a root β ∈ ∆+

r such that α + β ∈ Σr(m). Let v =
[xβ(1), u] =

∏
xα(vα). It is easy to see that R(v) ⊆ R(u). Moreover, since α is

minimal, we have vα = 0, which implies R(v) 6= R(u), and vα+β = cuα, where c
is a structure constant of the Chevalley group. Applying the induction hypothesis
to v, we find that xα+β(cuα) ∈ W . Since by the NVB condition, c is invertible, it
follows from Lemma 4.2 that xα(uα) ∈ W . 2

We have defined in §3 a ladder in R, which is a collection σ = (σ1, . . . , σn) of
additive subgroups of R with certain properties. More precisely, since by Lemma 2.1
one has |Σr(i)| = 1 only when P is extraspecial and i = 2 = n, or when Φ = G2,
P = P1 and i = 2, all these additive subgroups, save maybe one, are ideals. If
σi £ R for all 1 ≤ i ≤ mr(α̃), we say that σ is an ideal ladder.

Recall that we assign to a ladder σ the ladder subgroup U(σ). Condition (1) (and
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the fact that each σi is an additive subgroup) in the definition of a ladder implies
that U(σ) contains no unipotent root elements but those which were prescribed. It
admits the following explicit description.

Lemma 4.5. For any αr-ladder σ in R, one has

U(σ) =
{
u ∈ U

∣∣ for any decomposition u =
∏

α∈Σr

xα(uα), uα ∈ σmr(α) for all α
}
.

Proof. One inclusion is obvious. Now suppose u = xγ1(ξ1)xγ2(ξ2) · · ·xγk
(ξk) for

some γ1, . . . , γk ∈ Σr and ξi ∈ σmr(γi). It is easy to see that if u =
∏

α∈Σr
xα(uα),

where the product is taken in some fixed order, then by Chevalley commutator
relations, uα −

∑
γi=α ξi is an integral linear combination of products of the form

ξi1 · · · ξik
, where γi1 + · · · + γik

= α. Since this implies mr(γi1) + · · · + mr(γik
) =

mr(α), we have uα ∈ σmr(α) by the definition of a ladder. 2

On the other hand, condition (2) in the definition of a ladder guarantees that
U(σ) is normalized by EL.

Lemma 4.6. For any αr-ladder σ, the group U(σ) is normalized by EL. If σ is
an ideal ladder, U(σ) is also normalized by L.

Proof. The first assertion follows directly from the Chevalley commutator rela-
tions. Consider the case when σ is an ideal ladder. Let us study the action of
the whole Levi subgroup L = L(R) on the unipotent radical U = U(R). Fixing a
level-adapted order on Φ+, we get an isomorphism of the scheme U onto an affine
variety, which induces the isomorphism of U(R) onto Rk via the choice of basis
e1 = xβ1(1), . . . , ek = xβk

(1), where Σ = {β1, . . . , βk}, the roots listed in the cor-
responding order. Since any element of L acts on U as an algebraic automorphism,
for any 1 ≤ i ≤ k, we can define a map (of sets) ϕi(R) : L(R) → R[x1, . . . , xk] so
that for any g ∈ L(R) and any λi ∈ R (1 ≤ i ≤ k), we have

g · (
k∑

i=1

λiei

)
=

k∑

i=1

ϕi(g)(λ1, . . . , λk)ei.

For any fixed i, these maps ϕi(R) define a natural transformation L → X of the
functor L = Hom(A,−) : Rings → Sets, where A denotes the Hopf algebra of L,
to the functor X : Rings → Sets, X(R) = R[x1, . . . , xn]. Therefore, by the Yoneda
Lemma, there exists an element pi =

∑
j1,... ,jk≥0 pij1···jk

xj1
1 · · ·xjk

k ∈ A[x1, . . . , xk]
such that ϕi(g) = X(g)(pi) =

∑
j1,... ,jk≥0 g(pij1···jk

)xj1
1 · · ·xjk

k for any ring R and
any g ∈ L(R) = Hom(A,R).

Consider any elementary root unipotent xβ(ξ) ∈ U(σ), β = βm. The Chevalley
commutator relations and the natural properties of the maximal torus imply that
for any g ∈ T · EL and any index (j1, . . . , jk) with jl = 0 for l 6= m, we have
g(pij1···jk

) = 0 whenever mr(βi) < mr(β) (this amounts to [g, xβ(ξ)] ∈ Umr(β)) or
jm = 0 (this amounts to the fact that all root factors of [g, xβ(ξ)] have a multiple
of ξ as their coefficient). Hence, for the same i, j1, . . . , jk, we have g(pij1···jk

) = 0
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for any g ∈ Ω(R), where Ω is the big cell of L. Since Ω is a dense open subscheme
of Spec A = L, the same equalities also hold for all g ∈ L(R); but they imply
[g, xβ(ξ)] ∈ U(σ). 2

This lemma immediately implies the following refinement of Lemma 4.4.

Corollary 4.7. Suppose 1 ≤ m ≤ mr(α̃) and |Σr(m)| ≥ 2. Then the Z[L]-
submodules of Vm are precisely Vm(I) for I £ R.

It follows from Lemma 4.5 that the intersection of ladder subgroups is a ladder
subgroup, corresponding to the intersection of ladders. The next statement implies
that the ladder subgroups form a lattice with respect to the natural operations.

Corollary 4.8. Consider a set of αr-ladders σt (t ∈ T ) in R. Then 〈U(σt) | t ∈ T 〉
= U(σ), where σ is an αr-ladder defined by σm =

∑
t∈T

σt
m +

∑
m1+m2=m

σm1σm2 for

1 ≤ m ≤ mr(α̃).

Proof. Obviously, we have 〈U(σt) | t ∈ T 〉 ≤ U(σ). On the other hand, EL nor-
malizes 〈U(σt) | t ∈ T 〉 since it normalizes each U(σt) for t ∈ T . Then it follows
from Lemmas 4.2 and 4.3 that 〈U(σt) | t ∈ T 〉 ≥ Xα(σm) for all 1 ≤ m ≤ mr(α̃)
and α ∈ Σr(m), thus we have 〈U(σt) | t ∈ T 〉 ≥ U(σ). 2

Corollary 4.9. For any αr-ladders τ and ρ in R, one has [U(τ), U(ρ)] = U(σ),
where σ is an αr-ladder defined by σm =

∑
m1+m2=m

τm1ρm2 for all 1 ≤ m ≤ mr(α̃).

In particular, [Uk, Un] = Uk+n for all natural integers k, n.

Proof. It is easy to see that σ is indeed a ladder. It also follows directly from
the Chevalley commutator formula that [U(τ), U(ρ)] ≤ U(σ). Conversely, consider
any 1 ≤ m1,m2 ≤ mr(α̃) such that m1 + m2 ≤ mr(α̃) and any ξ1 ∈ τm1 , ξ2 ∈
ρm2 . By Lemma 2.1, we have α̃m1+m2 − α̃m1 ∈ Φ and hence α̃m1+m2 − α̃m1 ∈
Σr(m2). Note that by the definition of a ladder, at least one of τm1 , ρm2 is an ideal.
Then since both U(σ) and U(ρ) normalize [U(τ), U(ρ)], Lemma 4.1 implies that
x

α̃m1+m2
(ξ1ξ2) ∈ [U(τ), U(ρ)]. Since [U(τ), U(ρ)] is also normalized by EL, we get

[U(τ), U(ρ)] ≥ U(σ) applying Lemma 4.2. 2

5 Proof of Theorem 3.1: the Generic Case

In this section, we prove that in all cases except Φ = G2 and r = 1, the ladder sub-
groups U(σ) studied in the previous section exhaust all subgroups in U normalized
by EL. It is the statement (i) of Theorem 3.1. Throughout this section, we suppose
P = Pr 6= P1 when Φ = G2.

Lemma 5.1. For any 1 ≤ m < k ≤ mr(α̃), one has

x
α̃m

(ξ), x
α̃k

(θ) ∈ 〈
x

α̃m
(ξ) x

α̃k
(θ)

〉EL
Uk+1.

Proof. Since Uk+1 £ U and Uk+1 is EL-invariant, we identify all the unipotent
root elements with their images in V = U/Uk+1 and prove that x

α̃m
(ξ), x

α̃k
(θ) ∈
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〈x
α̃m

(ξ) x
α̃k

(θ)〉EL = H ≤ V . Note that X
α̃k

is central in V . By Lemma 2.1, there
exists a root β ∈ ∆r such that only one of α̃m + β, α̃k + β is in Φ. Consider two
cases.

Case 1: α̃k + β ∈ Φ. Then [x
α̃m

(ξ), Xβ ] = 1 and hence [x
α̃m

(ξ) x
α̃k

(θ), Xβ ] =
[x

α̃k
(θ), Xβ ]. Since X

α̃k
is central in V , both commutators [x

α̃k
(ξ), [x

α̃k
(ξ), Xβ ]] and

[x
α̃k

(ξ), [x
α̃k

(ξ), [x
α̃k

(ξ), Xβ ]]] are trivial. Then by Lemma 4.1 X
α̃k+β

(θR) ≤ H and
hence X

α̃k
(θR) ≤ H.

Case 2: α̃m + β ∈ Φ. Then [x
α̃k

(ξ), Xβ ] = 1 and hence [x
α̃m

(ξ) x
α̃k

(θ), Xβ ] =
[x

α̃m
(ξ), Xβ ] ⊆ H. The centrality of X

α̃k
in V also implies

[x
α̃m

(ξ) x
α̃k

(θ), [x
α̃m

(ξ), Xβ ]] = [x
α̃m

(ξ), [x
α̃m

(ξ), Xβ ]],

and further,

[x
α̃m

(ξ)x
α̃k

(θ), [x
α̃m

(ξ) x
α̃k

(θ), [x
α̃m

(ξ), Xβ ]]] = [x
α̃m

(ξ), [x
α̃m

(ξ), [x
α̃m

(ξ), Xβ ]]].

Then by Lemma 4.1, we have X
α̃m+β

(ξR) ≤ H and X
α̃m

(ξR) ≤ H. 2

The following lemma shows that any EL-normalized subgroup H in U is gener-
ated by elementary root unipotents.

Lemma 5.2. Let u =
∏

xα(uα) ∈ U , where the product is taken over all roots of
Σr in a level-adapted order. Then for all α ∈ Σr, one has xα(uα) ∈ 〈u〉EL.

Proof. Denote 〈u〉EL by H. Fix a level-adapted order ≤ on Φ+. We argue by the
inverse induction on the ≤-minimal root α ∈ Σr satisfying uα 6= 0. Denote this root
by r(u). If r(u) is the maximal possible, i.e., r(u) = α̃, then u = x

α̃
(u

α̃
) and the

claim is trivial. Suppose r(u) < α̃, r(u) ∈ Σr(m). We will prove xr(u)(ur(u)) ∈ H.
Since H is normalized by EL, by Lemmas 4.4 and 4.2, we may assume r(u) = α̃m

without loss of generality. Then we have x
α̃m

(u
α̃m

) v ∈ H for some v ∈ Um+1.
We will show that H contains x

α̃m
(u

α̃m
) ·v′, where r(v′) > r(v). Let mr(r(v)) =

k. If r(v) 6= α̃k, by Lemma 2.1, there exists a root β ∈ ∆+
r such that r(v) + β

∈ Σr(k). The element w = [xβ(1), x
α̃m

(u
α̃m

) v] = x
α̃m

(u
α̃m

) [xβ(1), v]x
α̃m

(−u
α̃m

)
is in H, and the Chevalley commutator formula implies that r(w) = r(v) + β
and wr(v)+β = cvr(v), c ∈ R∗. By the induction hypothesis, xr(v)+β(wr(v)+β) ∈
〈w〉EL ≤ H, hence by Lemma 4.2, xr(v)(vr(v)) ∈ H. Then H contains x

α̃m
(u

α̃m
)v ·

xr(v)(−vr(v)) = x
α̃m

(u
α̃m

) v′, where r(v′) > r(v).
Suppose now that r(v) = α̃k, i.e., v ∈ x

α̃k
(v

α̃k
) Uk+1. As Uk+1 is invariant under

the action of EL, one has 〈x
α̃m

(u
α̃m

) v〉ELUk+1 = 〈x
α̃m

(u
α̃m

) x
α̃k

(v
α̃k

)〉ELUk+1.
Then by Lemma 5.1, x

α̃m
(u

α̃m
) · v′ ∈ 〈x

α̃m
(u

α̃m
) v〉EL ≤ H for some v′ ∈ Uk+1.

Obviously, mr(r(v′)) ≥ k + 1, hence r(v′) > r(v). 2

The following statement is a corollary and in a sense a refinement of Lemma 5.2.

Lemma 5.3. Let u =
∏

xα(uα) ∈ U , where the product is taken over all roots of
Σr in a level-adapted order. Then for all α ∈ Σr(m) such that |Σr(m)| ≥ 2, one
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has xα(uα) ∈ 〈[u,EL]〉. In particular, if P is not extraspecial, then u ∈ 〈[u,EL]〉
for all u ∈ U .

Proof. Let H = 〈[u,EL]〉. It is clear that H is normalized by EL. We denote
by r(u) the minimal (with respect to the level-adapted order mentioned in the
statement) root α ∈ Σr satisfying uα 6= 0. Suppose r(u) ∈ Σr(m) and |Σr(m)| > 1.
We will prove xr(u)(ur(u)) ∈ H. Since |Σr(m)| > 1, by Lemma 2.1, there exists
β ∈ ∆r such that r(u) + β ∈ Σr(m). Moreover, if r(u) 6= α̃m, then one can take
β ∈ ∆+

r , and if r(u) = α̃m, then obviously β ∈ ∆−
r . One can represent [u, xβ(1)] = v

as a product
∏

xα(vα), α ∈ Σr. It is easy to see that in both cases, the commutator
relations imply r(v) ∈ Σr(m) and vr(v) = cur(u), where c ∈ R∗ by NVB. Then by
Lemmas 5.2 and 4.2, we get xr(u)(ur(u)) ∈ 〈v〉EL ≤ H.

Furthermore, since we exclude the case (Φ, r) = (G2, 1), by Lemma 2.1, we have
|Σr(m)| = 1 only if r(u) = α̃. It means that the claim can be proved by the inverse
induction on r(u). Indeed, it has been proved already that xr(u)(ur(u)) ∈ H, and
if u = xr(u)(ur(u)) · u′, then for any z ∈ EL, we have [u, z] = [xr(u)(ur(u)) · u′, z]
= xr(u)(ur(u))[u′, z][xr(u)(ur(u)), z], which implies 〈[u′, EL]〉 ≤ H. 2

It is actually proved by now that under the assumption (Φ, r) 6= (G2, 1), any
EL-normalized subgroup in U must be of the form U(σ), but let us write it out
formally for completeness.

Proof of Theorem 3.1(i). Let H be a subgroup of U normalized by EL. Set σ(α) =
{ξ ∈ R |xα(ξ) ∈ H} for any α ∈ Σr. It is clear that σ(α) is an additive subgroup
of R; moreover, for any 1 ≤ m ≤ mr(α̃) and α ∈ Σr(m), by Lemma 4.2, σ(α) £ R
whenever |Σr(m)| ≥ 2, and σ(α) = σ(α′) for all α′ ∈ Σr(m). Set σm = σ(α) for
α ∈ Σr and 1 ≤ m ≤ mr(α̃). By Lemma 4.3, σ = (σ1, . . . , σ

mr(α̃)
) is an αr-ladder

in R. By the definition of σ, we have U(σ) ≤ H. By Lemma 5.2, H ≤ U(σ). 2

6 Proof of Theorem 3.1: the Case Φ = G2 and P = P1

In this section, we finish the proof of Theorem 3.1. Let G be a Chevalley group of
type G2, and P = P1 be a maximal parabolic subgroup in G corresponding to the
short simple root αr = α1. Then ∆r = ∆1 = {α2,−α2} and

Σr = Σ1 = {α1, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}.

So we have α̃ = 3α1 + 2α2 and mr(α̃) = 3. One can see that, firstly, Σr(2) consists
of the unique element 2α1 + α2, and secondly, there exists no element β ∈ ∆r such
that only one of α̃1 + β, α̃3 + β is in Φ. These are the principal differences between
the case (Φ, r) = (G2, 1) and those in §5.

We begin with the following technical lemma. Our choice of signs of the structure
constants of the Chevalley group follows [21].

Lemma 6.1. Let u =
∏

xα(uα) ∈ U , where the product is taken over all roots of
Σr in a level-adapted order. Then 〈u〉EL ≥ X2α1+α2(I

2) X3α1+α2(I
3) X3α1+2α2(I

3),
where I is the ideal generated by uα1 and uα1+α2 .
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Proof. Denote the group 〈u〉EL by H. By Lemma 4.4, we have H/U2 ≥ V1(I),
therefore for any ξ ∈ I, there exists v ∈ H with vα1 = ξ.

Consider any ξi ∈ I (i = 1, 2, 3) and the corresponding elements vi ∈ H. It
is easy to see that w = [v1, [xα2(1), v2]] = x2α1+α2(cξ1ξ2) x3α1+α2(η1) x3α1+2α2(η2),
where c ∈ R∗ by NVB and η1, η2 ∈ R. Commuting w with xα2(θ) and x−α2(θ),
θ ∈ R, we see that X3α1+2α2(η2R), X3α1+α2(η1R) ≤ H, thus x2α1+α2(cξ1ξ2) ∈ H
and the inclusion X2α1+α1(I

2) ≤ H is proved.
Analogously, [[v3, xα2(1)], w] = x3α1+2α2(c

′ξ1ξ2ξ3), where c′ ∈ R∗, which implies
X3α1+2α2(I

3) ≤ H. Then by Lemma 4.2, X3α1+α2(I
3) ≤ H. 2

The following lemma provides examples of subgroups in U which are normalized
by EL and not generated by elementary root unipotents. More precisely, we describe
the smallest subgroups with this property.

Lemma 6.2. For any ξ, η ∈ R,

〈xα1(ξ) x3α1+α2(η)〉EL

=
〈
xα1(ξθ) x3α1+α2(ηθ), xα1+α2(−ξθ) x3α1+2α2(ηθ),

X2α1+α2(ξ
2R)X3α1+α2(ξ

3R) X3α1+2α2(ξ
3R) | θ ∈ R

〉

= 〈xα1+α2(−ξ) x3α1+2α2(η)〉EL.

Proof. Denote by H the group in the middle. Direct calculations show that

[x−α2(θ), xα1+α2(ξ) x3α1+2α2(η)]
= xα1(−θξ) x2α1+α2(θξ

2)x3α1+α2(θη + ξ3θ2) x3α1+α2(−ξ3θ)

and
[xα2(θ), xα1(−ξ)x3α1+α2(η)]

= xα1+α2(ξθ) x2α1+α2(−ξ2θ) x3α1+α2(ξ
3θ) x3α1+2α2(ηθ − ξ3θ2)

for every θ ∈ R. It follows from Lemma 6.1 that both 〈xα1(ξ)x3α1+α2(η)〉EL and
〈xα1+α2(−ξ) x3α1+2α2(η)〉EL contain X2α1+α2(ξ

2R) X3α1+α2(ξ
3R) X3α1+2α2(ξ

3R),
hence the only thing to check is that EL normalizes H. We have just seen that
[EL, xα1(ξ) x3α1+α2(η)] and [EL, xα1+α2(−ξ) x3α1+2α2(η)] lie in H (the second gen-
erator of EL in both cases commutes with the corresponding product). We finish
the proof by observing that EL acts trivially on X2α1+α2(ξ

2R) and normalizes
X3α1+α2(ξ

3R)X3α1+2α2(ξ
3R). 2

By Lemma 6.2, the subgroup U(M, A) defined in §3 is normalized by EL. It
also admits the following explicit description.

Lemma 6.3. For any coherent pair (M, A), one has

U(M, A) =
{
u ∈ U

∣∣ for any decomposition u =
∏

α∈Σr

xα(uα), one has

(uα1 , u3α1+α2), (−uα1+α2 , u3α1+2α2) ∈ M, u2α1+α2 ∈ A
}
.
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Proof. It follows from the definition of a coherent pair when acting in the same
way as in the proof of Lemma 4.5. 2

Proof of Theorem 3.1(ii). Let H be a subgroup of U normalized by EL. Set

M = {(ξ, η) |xα1(ξ) x3α1+α2(η) ∈ H} and A = {ξ |x2α1+α2(ξ) ∈ H}.
Obviously, A is an additive subgroup of R. We also have by Lemma 6.2 that M is
an R-submodule of R×R, and π1(M)2 ≤ A. Moreover, it follows from the identity
[x2α1+α2(θ), xα1+α2(ξ) x3α1+2α2(η)] = x3α1+2α2(3θξ) that {0} × π1(M)A ≤ M .
Hence, the pair (M, A) is coherent. We now show that U(M, A) = H.

Observe by Lemma 6.2 that M = {(ξ, η) |xα1+α2(−ξ) x3α1+2α2(η) ∈ H}. Con-
sider an element u =

∏
xα(uα) ∈ H (the product is taken over all roots of Σr in a

level-adapted order). It follows from the Chevalley commutator formula that

[xα2(1), u] = xα1+α2(−uα1)x3α1+2α2(u3α+α2) v,

where v ∈ X2α1+α2(u
2
α1

R) X3α1+α2(u
3
α1

R)X3α1+2α2(u
3
α1

R). By Lemma 6.1, we
have v ∈ H, thus H contains xα1+α2(−uα1) x3α1+2α2(u3α1+α2) and (uα1 , u3α1+α2) ∈
M . Commuting u with x−α2(1), we also get xα1(−uα1+α2)x3α1+α2(u3α1+2α2) ∈ H,
and (−uα1+α2 , u3α1+2α2) ∈ M . Since all other factors of u are in H, we have
x2α1+α2(u2α1+α2) ∈ H as well. Therefore, u2α1+α2 ∈ A and finally u ∈ U(M, A). 2

7 Proof of Theorem 3.3

In this section, we prove the main theorem of the paper, Theorem 3.3, and Corol-
lary 3.4. Henceforth, we assume NRO. We first prove some technical lemmas,
which actually reduce the description of EL-subgroups in P to the description of
such subgroups in L and in U separately. The following lemma is in a way analogous
to the statement (iv) of Lemma 2.1, as well as Lemma 7.2 below is to Lemma 5.1.

Lemma 7.1. Let β̃ be the root of maximal height in ∆i
r for some i ∈ {1, 2}. Then

for any 1 ≤ k ≤ mr(α̃), except k = 1 when (Φ, r) = (Cl, 1), there exists β ∈ ∆−
r

such that only one of β̃ + β, α̃k + β is in Φ.

Proof. Case 1: Φ is simply laced. In this case, all the roots have the same length,
say

√
2. Then (α, α′) ∈ {−1, 0, 1} for any α, α′ ∈ Φ, and the sum α + α′ is a root

only if (α, α′) = −1. Let j = 3− i. If there exists β ∈ ∆j
r such that α̃k + β ∈ Φ, we

can take it. Else α̃k is orthogonal to ∆j
r.

Now if |Σr(k)| = 1, then we choose β to be equal to any simple root in ∆i
r which

is non-orthogonal to β̃. Otherwise there exists a simple root αn ∈ ∆i
r such that

α̃k − αn ∈ Φ since α̃k is the unique ¹-maximal root in Σr(k). The maximality of
α̃k also means (αm, α̃k) ≥ 0 for all αm ∈ ∆r, so (αn, α̃k) > 0 implies (β̃, α̃k) > 0.
Therefore, δ = α̃k − β̃ is a root. Since δ 6= α̃k and obviously δ ∈ Σr(k), there
exists a root γ ∈ ∆+

r such that δ + γ ∈ Φ. Moreover, γ ∈ ∆i
r, as both β̃ and

α̃k are orthogonal to ∆j
r. Now we note that δ + γ ∈ Φ means (δ, γ) < 0, i.e.,

(α̃k, γ) < (β̃, γ). But (α̃k, γ) ≥ 0 since α̃k is maximal, and hence (α̃k, γ) = 0 and
(β̃, γ) = 1. Then we can take β = −γ.
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Case 2: Φ = Bl. If i = 1, then we can take β = −αr−1 in the case k = 1 (∆i
r = ∅

when r = 1), and β = −α1 in the case k = 2. If i = 2, then we can take β = −αr+1

in the case k = 1 (∆i
r = ∅ when r = l), and β = −αr+2 in the case k = 2.

Case 3: Φ = Cl. If i = 1 (∆i
r = ∅ when r = 1), then we can take β = −αr−1 in

all cases. If i = 2, then we can take β = −α1 in the case k = 1 (recall that we have
excluded the pair (r, k) = (1, 1)), and β = −αr+1 in the case k = 2.

Case 4: Φ = F4. Since NRO holds, we have only two possibilities: r = 1 and
r = 2. If r = 1, then ∆1

r = ∅, and in the case i = 2, we take β = −α2 when k = 1,
and β = −α4 when k = 2. If r = 2, then ∆2

r = ∅, and in the case i = 1, we take
β = −α2 whenever k = 1 or k = 2. 2

Lemma 7.2. Let β̃ be the root of maximal height in one of ∆1
r, ∆2

r. Then for any
1 ≤ k ≤ mr(α̃), one has x

β̃
(ξ), x

α̃k
(θ) ∈ 〈x

β̃
(ξ) x

α̃k
(θ)〉ELUk+1.

Proof. If only there exists a root β 6= −β̃ ∈ ∆r such that only one of β̃+β, α̃k +β is
in Φ, the claim can be proved just in the same way as Lemma 5.1. By Lemma 7.1,
such β exists in all cases except Φ = Cl, r = 1 and k = 1. In the latter case, one can
see that α̃k = α̃1 = α1 + 2α2 + · · ·+ 2αl−1 + αl and β̃ = 2α2 + · · ·+ 2αl−1 + αl. We
have [x−α2(1), x

β̃
(ξ) x

α̃k
(θ)] = x

β̃−α2
(c1ξ) x

β̃−2α2
(c2ξ)x

α̃k−α2
(c3θ), where c1, c2, c3

are some structure constants of the Chevalley group. Further,

[x−α2(1), x
β̃−α2

(c1ξ) x
β̃−2α2

(c2ξ)x
α̃k−α2

(c3θ)] = x
β̃−2α2

(c1c4ξ),

where c4 is also a structure constant. Therefore, x
β̃−2α2

(cξ) ∈ 〈x
β̃
(ξ) x

α̃k
(θ)〉EL,

where c ∈ R∗ by NVB. Then by Lemma 4.1 we have x
β̃
(ξ) ∈ 〈x

β̃
(ξ)x

α̃k
(θ)〉EL,

and the claim becomes obvious. 2

The following lemma shows that any EL-normalized subgroup H of P contains
a large enough EL-normalized subgroup of L.

Lemma 7.3. Let H be a subgroup of P normalized by EL. Denote by HL the
image of H under the natural projection P → P/U ∼= L. Then H ≥ [HL, EL].

Proof. It follows from Lemma 3.2 that [HL, EL] = EL1(R, I1) × EL2(R, I2) for
some I1, I2 £ R. For any α ∈ ∆i

r (i = 1, 2), one has Xα(Ii)ELi

= ELi(R, Ii) by
Lemma 4.1. Fix i ∈ {1, 2} such that ∆i

r is not empty. Let β̃ denote the maximal
root of ∆i

r. Then it is enough to prove x
β̃
(ξ) ∈ H for any ξ ∈ Ii.

Since x
β̃
(ξ) ∈ HL, there exists u ∈ U such that x

β̃
(ξ)u ∈ H. We can write u =∏

xα(uα), where the product is taken over all α ∈ Σr in some level-adapted order
≤ . We denote by r(u) the minimal (with respect to ≤) root in Σr such that uα 6= 0.
We will show that H contains x

β̃
(ξ)u′, where r(u′) > r(u). Let mr(r(u)) = k. If

r(u) 6= α̃k, then by Lemma 2.1, there exists a root β ∈ ∆+
r such that r(u) + β ∈

Σr(k). The element w = [xβ(1), x
β̃
(ξ)u] = x

β̃
(ξ)[xβ(1), u]x

β̃
(−ξ) =

∏
xα(wα) is in

H ∩ U , and the Chevalley commutator formula implies that r(w) = r(u) + β and
wr(u)+β = cur(u), c ∈ R∗. Since H is normalized by EL, by Lemma 5.2 together
with Lemma 4.2, we get xr(u)(ur(u)) ∈ H. Then H contains x

β̃
(ξ)u · xr(u)(−ur(u))

= x
β̃
(ξ)u′, where r(u′) > r(u).
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Suppose now that r(u) = α̃k, i.e., u ∈ x
α̃k

(u
α̃k

)Uk+1. As Uk+1 is invariant under
the action of EL, one has 〈x

β̃
(ξ)u〉ELUk+1 = 〈x

β̃
(ξ)x

α̃k
(u

α̃k
)〉ELUk+1. Then by

Lemma 7.2, one has x
β̃
(ξ) · u′ ∈ 〈x

β̃
(ξ)u〉EL ≤ H for some u′ ∈ Uk+1. Obviously,

mr(r(u′)) ≥ k + 1, hence r(u′) > r(u). 2

Proof of Theorem 3.3. Consider an element zu ∈ H, where z ∈ HL and u ∈ U . One
has [z, EL] ⊆ H by Lemma 7.3. For any h ∈ EL, one has [zu, h] = z[u, h][z, h], then
H contains z[u, h] = zuhu−1h−1z−1 = zu[h, u−1], and therefore [h, u−1] ∈ H. If P
is not extraspecial, then u ∈ H by Lemma 5.3, hence we get HL ≤ H, and together
with Lemma 4.6, this finishes the proof. If P is extraspecial, then Lemma 5.3 implies
u ∈ U(σ)X

α̃
= U(σ1, R), and hence we get the inclusion H ≤ EL∗(I1, I2)nU(σ)X

α̃
.

The converse statement for P not extraspecial follows directly from Lemma 4.6
and the definition of EL∗(I1, I2). If P is extraspecial, one also need to recall that
EL acts trivially on X

α̃
. 2

Proof of Corollary 3.4. Let H ≤ P be normalized by EP . Then U normalizes
H ∩ U = U(σ), and hence by Corollary 4.9, we have σ1 ⊆ σ2 ⊆ · · · ⊆ σ

mr(α̃)
. By

Theorem 3.3, we have H ≥ EL1(R, I1) × EL2(R, I2). Further, it follows from the
basic properties of root systems that α1+· · ·+αl is a root. Therefore, by Lemma 2.1,
for both i = 1 and i = 2 (unless ∆i

r is empty), one can find roots α ∈ Σr(1) and β ∈
∆i

r such that α +β is a root. By Lemma 4.1, we have Xβ(Ii)Xα ≥ Xβ+α(Ii), hence
H ∩ U ≥ Xβ+α(Ii), which implies Ii ⊆ σ1. It remains to prove HL ≤ E∗(Φ, R, σ1).

Since I1 + I2 ⊆ σ1, the image of HL under the reduction homomorphism ρσ1 :
G(Φ, R) → G(Φ, R/σ1) centralizes EL(R/σ1) = E(∆r, R/σ1). By Lemma 2.2, the
centralizer of EL(R/σ1) = E(∆r, R/σ1) in L(R/σ1) = G(∆r, R/σ1) coincides with
the set of R/σ1-valued points of the scheme-theoretic centre of the reductive alge-
braic group L and therefore is contained in the torus T (Φ, R/σ1) (see [9, Exp. XXII
4.1.7]). In particular, any element t ∈ ρσ1(HL) satisfies txβ(η)t−1 = xβ(χ(β)η)
for all β ∈ Φ and η ∈ R/σ1, where χ : Λ → (R/σ1)∗ is an R/σ1-character of
the weight lattice Λ of G. The centralizer property implies that χ(β) = 1 for all
β ∈ ∆r. On the other hand, we know that [HL, U ] ≤ U(σ1, . . . , σ

mr(α̃)
), and hence

[t, xαr
(1)] = xαr

(χ(αr) − 1) is in U(0, σ2/σ1, . . . , σ
mr(α̃)

/σ1). By Lemma 4.5, this
implies that χ(αr) = 1 as well. But then χ is identically 1 on Φ, or t centralizes
E(Φ, R/σ1). Again by Lemma 2.2 (or by [3]), this is the same as to say that t is in
the centre of G(Φ, R/σ1). Thus, HL is contained in the inverse image under ρσ1 of
the centre of G(Φ, R/σ1), that is, in E∗(Φ, R, σ1).

Suppose now that H is an EL-normalized subgroup of P satisfying I1 + I2 ⊆ σ1

⊆ · · · ⊆ σ
mr(α̃)

and HL ≤ E∗(Φ, R, σ1). We will prove

[H, U ] ≤ (
EL1(R, I1)× EL2(R, I2)

)
n U(σ) ≤ H.

It follows from the Chevalley commutator relations and the inclusions σ1 ⊆ · · ·
⊆ σ

mr(α̃)
that [U(σ), U ] ≤ U(σ) if P is not extraspecial, and that [U(σ)X

α̃
, U ] ≤

U(σ) if P is extraspecial. Further, since HL ≤ E∗(Φ, R, σ1), we have [HL, U ] ≤
E(R, Φ, σ1). On the other hand, [HL, U ] ≤ U , and it is clear that U ∩E(Φ, R, σ1) =
U(σ1, . . . , σ1). This proves [HL, U ] ≤ U(σ1, . . . , σ1) ≤ U(σ). 2
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[9] M. Demazure, A. Grothendieck, Schémas en groupes, Lecture Notes in Mathematics,

151–153, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
[10] V. Kazakevich, A. Stavrova, Subgroups normalized by the elementary Levi subgroup,

J. Math. Sci. 134 (2006) 2549–2557.
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