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We give a description of the C1-interior (Int1(OrientSh)) of the set
of smooth vector fields on a smooth closed manifold that have
the oriented shadowing property. A special class B of vector fields
that are not structurally stable is introduced. It is shown that the
set Int1(OrientSh\B) coincides with the set of structurally stable
vector fields. An example of a field of the class B belonging to
Int1(OrientSh) is given. Bibliography: 18 titles.

© 2009 Published by Elsevier Inc

1. Introduction

The theory of shadowing of approximate trajectories (pseudotrajectories) in dynamical systems
is now well developed (see, for example, the monographs [1,2]). At the same time, the problem of
complete description of systems having the shadowing property seems unsolvable. We have no hope
to characterize systems with the shadowing property in terms of the theory of structural stability
(such as hyperbolicity and transversality) since the shadowing property is preserved under homeo-
morphisms of the phase space (at least in the compact case), while the above-mentioned properties
are not.

The situation changes completely when we pass from the set of smooth dynamical systems having
the shadowing property (or some of its analogs) to its C1-interior. It was shown by Sakai [3] that
the C1-interior of the set of diffeomorphisms with the shadowing property coincides with the set of
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tructurally stable diffeomorphisms. Later, a similar result was obtained for the set of diffeomorphisms
ith the orbital shadowing property [4].

In this context, there is a real difference between the cases of discrete dynamical systems gen-
rated by diffeomorphisms and systems with continuous time (flows) generated by smooth vector
elds. This difference is due to the necessity of reparametrizing shadowing trajectories in the latter
ase. One of the main goals of the present paper is to show that this difference is crucial, and the
esults for flows are essentially different from those for diffeomorphisms.

Let us pass to the main definitions and results. Let M be a smooth closed (i.e., compact and
oundaryless) manifold with Riemannian metric dist and let n = dim M . Consider a smooth (C1) vector
eld on X and denote by φ the flow of X . We denote by

O (x, φ) = {
φ(t, x): t ∈ R

}
he trajectory of a point x in the flow φ; O +(x, φ) and O −(x, φ) are the positive and negative semi-
rajectories, respectively.

Fix a number d > 0. We say that a mapping g : R → M (not necessarily continuous) is a d-
seudotrajectory (both for the field X and flow φ) if

dist
(

g(τ + t),φ
(
t, g(τ )

))
< d for τ ∈ R, t ∈ [0,1]. (1)

A reparametrization is an increasing homeomorphism h of the line R; we denote by Rep the set
f all reparametrizations.

For a > 0, we denote

Rep(a) =
{

h ∈ Rep:

∣∣∣∣h(t) − h(s)

t − s
− 1

∣∣∣∣ < a, t, s ∈ R, t �= s

}
.

In this paper, we consider the following three shadowing properties (and the corresponding sets
f dynamical systems).

We say that a vector field X has the standard shadowing property (X ∈ StSh) if for any ε > 0
e can find d > 0 such that for any d-pseudotrajectory g(t) of X there exist a point p ∈ M and a

eparametrization h ∈ Rep(ε) such that

dist
(

g(t),φ
(
h(t), p

))
< ε for t ∈ R. (2)

We say that a vector field X has the oriented shadowing property (X ∈ OrientSh) if for any
> 0 we can find d > 0 such that for any d-pseudotrajectory of X there exist a point p ∈ M

nd a reparametrization h ∈ Rep such that inequalities (2) hold (thus, it is not assumed that the
eparametrization h is close to identity).

Finally, we say that a vector field X has the orbital shadowing property (X ∈ OrbitSh) if for any
> 0 we can find d > 0 such that for any d-pseudotrajectory of X there exists a point p ∈ M such

hat

distH
(
Cl O (p, φ),Cl

{
g(t): t ∈ R

})
< ε,

here distH is the Hausdorff distance.
Let us note that the standard shadowing property is equivalent to the strong pseudo orbit tracing

roperty (POTP) in the sense of Komuro [5]; the oriented shadowing property was called the normal
OTP by Komuro [5] and the POTP for flows by Thomas [6].

We consider the following C1 metric on the space of smooth vector fields: If X and Y are vector
elds of class C1, we set

ρ1(X, Y ) = max
x∈M

(∣∣X(x) − Y (x)
∣∣ +

∥∥∥∥∂ X

∂x
(x) − ∂Y

∂x
(x)

∥∥∥∥
)

,

Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
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where | . | is the norm on the tangent space Tx M generated by the Riemannian metric dist, and ‖ .‖
is the corresponding operator norm for matrices.

For a set A of vector fields, Int1(A) denotes the interior of A in the C1 topology generated by the
metric ρ1.

Let us denote by S and N the sets of structurally stable and nonsingular vector fields, respectively
The only result in the problem under study was recently published by Lee and Sakai [7]:

Int1(StSh ∩N) ⊂ S.
To formulate our main results, we need one more definition.
Let us say that a vector field X belongs to the class B if X has two hyperbolic rest points p and q

(not necessarily different) with the following properties:

(1) The Jacobi matrix D X(q) has two complex conjugate eigenvalues μ1,2 = a1 ± ib1 of multiplicity
one with a1 < 0 such that if λ �= μ1,2 is an eigenvalue of D X(q) with Reλ < 0, then Reλ < a1;

(2) the Jacobi matrix D X(p) has two complex conjugate eigenvalues ν1,2 = a2 ± ib2 with a2 > 0 of
multiplicity one such that if λ �= ν1,2 is an eigenvalue of D X(p) with Reλ > 0, then Reλ > a2;

(3) the stable manifold W s(p) and the unstable manifold W u(q) have a trajectory of nontransverse
intersection.

Condition (1) above means that the “weakest” contraction in W s(q) is due to the eigenvalues μ1,2
(condition (2) has a similar meaning).

Theorem 1. Int1(OrientSh\B) = S.

Let us note that Theorem 1 was stated (without a proof) in the author’s short note [8]. Let us
also note that if dim M � 3, then Int1(OrientSh) = S (which also was stated in [8] and proved by the
second author in [9]; in [9], it was also shown that if LipSh is the set of vector fields that have an
analog of the standard shadowing property with ε replaced by Ld, then Int1(LipSh) = S).

Theorem 2. Int1(OrientSh) ∩ B �= ∅.

Theorem 3. Int1(OrbitSh ∩N) ⊂ S.

Let us note that Theorem 3 generalizes the above-mentioned result by Lee and Sakai.
The structure of the paper is as follows: In Section 2, we prove Theorem 1 and discuss the proof

of Theorem 3; in Section 3, we prove Theorem 2.

2. Proof of Theorem 1

First we introduce some notation.
We denote by B(a, A) the a-neighborhood of a set A ⊂ M .
The term “transverse section” will mean a smooth open disk in M of codimension 1 that is trans-

verse to the flow φ at any of its points.
Let Per(X) denote the set of rest points and closed orbits of a vector field X .
Let us recall that X is called a Kupka–Smale field (X ∈ KS) if

(KS1) any trajectory in Per(X) is hyperbolic;
(KS2) stable and unstable manifolds of trajectories from Per(X) are transverse.

The proof of Theorem 1 is based on the following result (see [10]): Int1(KS) = S.
Let T denote the set of vector fields X that have property (KS1). Our first lemma is applied in the

proofs of both Theorems 1 and 3; for this purpose, we formulate and prove it for the set OrbitSh.
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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emma 1.

Int1(OrbitSh) ⊂ T . (3)

roof. To get a contradiction, let us assume that there exists a vector field X ∈ Int1(OrbitSh) that does
ot have property (KS1), i.e., the set Per(X) contains a trajectory p that is not hyperbolic.

Let us first consider the case where p is a rest point. Identify M with Rn in a neighborhood of p.
pplying an arbitrarily C1-small perturbation of the field X , we can find a field Y ∈ Int1(OrbitSh) that
linear in a neighborhood U of p (we also assume that p is the origin of U ).
(Here and below in the proof of Lemma 1, all the perturbations are C1-small perturbations that

ave the field in Int1(OrbitSh); we denote the perturbed fields by the same symbol X and their flows
y φ.)

Then trajectories of X in U are governed by a differential equation

ẋ = P x, (4)

here the matrix P has an eigenvalue λ with Reλ = 0.
Consider first the case where λ = 0. We perturb the field X (and change coordinates, if necessary)

o that, in Eq. (4), the matrix P is block-diagonal,

P = diag(0, P1), (5)

nd P1 is an (n − 1) × (n − 1) matrix.
Represent coordinate x in U as x = (y, z) with respect to (5); then

φ
(
t, (y, z)

) = (
y,exp(P1t)z

)
U .
Take ε > 0 such that B(4ε, p) ⊂ U . To get a contradiction, assume that X ∈ OrbitSh; let d corre-

pond to the chosen ε .
Fix a natural number m and consider the following mapping from R into U :

g(t) =
{ y = −2ε, z = 0; t � 0,

y = −2ε + t/m, z = 0; 0 < t < 4mε,

y = 2ε, z = 0; 4mε < t.

Since the mapping g is continuous, piecewise differentiable, and either ẏ = 0 or ẏ = 1/m, g is a
-pseudotrajectory for large m.

Any trajectory of X in U belongs to a plane y = const; hence,

distH
(
Cl

(
O (q, φ)

)
,Cl

({
g(t): t ∈ R

}))
� 2ε

r any q. This completes the proof in the case considered.
Similar reasoning works if p is a rest point and the matrix P in (4) has a pair of eigenvalues ±ib,

�= 0.
Now we assume that p is a nonhyperbolic closed trajectory. In this case, we perturb the vector

eld X in a neighborhood of the trajectory p using the perturbation technique developed by Pugh
nd Robinson in [11]. Let us formulate their result (which will be used below several times).

ugh–Robinson perturbation. Assume that r1 is not a rest point of a vector field X. Let r2 = φ(τ , r1), where
> 0. Let Σ1 and Σ2 be two small transverse sections such that ri ∈ Σi, i = 1,2. Let σ be the local Poincaré

ransformation generated by these transverse sections.
Consider a point r′ = φ(τ ′, r1), where τ ′ ∈ (0, τ ), and let U be an arbitrary open set containing r′ .
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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Fix an arbitrary C1-neighborhood F of the field X.
There exist positive numbers ε0 and �0 with the following property: if σ ′ is a local diffeomorphism from

the �0-neighborhood of r1 in Σ1 into Σ2 such that

distC1(σ ,σ ′) < ε0,

then there exists a vector field X ′ ∈ F such that

(1) X ′ = X outside U ;
(2) σ ′ is the local Poincaré transformation generated by the sections Σ1 and Σ2 and trajectories of the field X ′

Let ω be the least positive period of the nonhyperbolic closed trajectory p. We fix a point π ∈ p
local coordinates in which π is the center, and a hyperplane Σ of codimension 1 transverse to the
vector F (π). Let y be coordinate in Σ .

Let σ be the local Poincaré transformation generated by the transverse section Σ ; denote
P = Dσ(0). Our assumption implies that the matrix P is not hyperbolic. In an arbitrarily small neigh-
borhood of the matrix P , we can find a matrix P ′ such that P ′ either has a real eigenvalue with unit
absolute value of multiplicity 1 or a pair of complex conjugate eigenvalues with unit absolute value
of multiplicity 1. In both cases, we can choose coordinates y = (v, w) in Σ in which

P ′ = diag(Q , P1), (6)

where Q is a 1 × 1 or 2 × 2 matrix such that |Q v| = |v| for any v .
Now we can apply the Pugh–Robinson perturbation (taking r1 = r2 = π and Σ1 = Σ2 = Σ ) that

modifies X in a small neighborhood of the point φ(ω/2,π) and such that, for the perturbed vector
field X ′ , the local Poincaré transformation generated by the transverse section Σ is given by y �→ P ′ y

Clearly, in this case, the trajectory of π in the field X ′ is still closed (with some period ω′). As
was mentioned, we assume that X ′ has the orbital shadowing property (and write X, φ,ω instead of
X ′, φ′,ω′).

We introduce in a neighborhood of the point π coordinates x = (x′, y), where x′ is one-dimen-
sional (with axis parallel to X(π)), and y has the above-mentioned property.

Of course, the new coordinates generate a new metric, but this new metric is equivalent to the
original one; thus, the corresponding shadowing property (or its absence) is preserved.

We need below one more technical statement.

LE (local estimate). There exist a neighborhood W of the origin in Σ and constants l, δ0 > 0 with the fol-
lowing property: if z1 ∈ Σ ∩ W and |z2 − z1| < δ < δ0 , then we can represent z2 as φ(τ , z′

2) with z′
2 ∈ Σ

and

|τ |, ∣∣z′
2 − z1

∣∣ < lδ. (7)

This statement is an immediate corollary of the theorem on local rectification of trajectories (see
for example, [12]): In a neighborhood of a point that is not a rest point, the flow of a vector field of
class C1 is diffeomorphic to the family of parallel lines along which points move with unit speed (and
it is enough to note that a diffeomorphic image of Σ is a smooth submanifold transverse to lines of
the family).

We may assume that the neighborhood W in LE is so small that for y ∈ Σ ∩ W , the function α(y)

(the time of first return to Σ ) is defined, and that the point φ(α(v, w), (0, v, w)) has coordinates
(Q v, P1 w) in Σ .

Let us take a neighborhood U of the trajectory p such that if r ∈ U , then the first point of inter-
section of the positive semitrajectory of r with Σ belongs to W .
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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Take a > 0 such that the 4a-neighborhood of the origin in Σ is a subset of W . Fix

ε < min

(
δ0,

a

4l

)
,

here δ0 and l satisfy the LE. Let d correspond to this ε (in the definition of the orbital shadowing
roperty).

Take y0 = (v0,0) with |v0| = a. Fix a natural number N and set

αk = α

((
k

N
Q k v0,0

))
, k ∈ [0, N − 1),

β0 = 0, βk = α1 + · · · + αk,

nd

g(t) =
⎧⎨
⎩

φ(t, (0,0,0)), t < 0;
φ(t − βk, (0, k

N Q k v0,0)), βk � t < βk+1, k ∈ [0, N − 1);
φ(t − βN , (0, Q N v0,0)), t � βN .

Note that for any point y = (v,0) of intersection of the set {g(t): t ∈ R} with Σ , the inequality
v| � a holds. Hence, we can take a so small that

B
(
2a,Cl

({
g(t): t ∈ R

})) ⊂ U .

Since ∣∣∣∣ k

N
Q k+1 v0 − k + 1

N
Q k+1 v0

∣∣∣∣ = a

N
→ 0, N → ∞,

(t) is a d-pseudotrajectory for large N .
Assume that there exists a point q such that

distH
(
Cl

(
O (q, φ)

)
,Cl

({
g(t): t ∈ R

}))
< ε.

this case, O (q, φ) ⊂ U , and there exist points q1,q2 ∈ O (q, φ) such that

|q1| =
∣∣q1 − (0,0,0)

∣∣ < ε

nd ∣∣q2 − (
0, Q N v0,0

)∣∣ < ε.

y the choice of ε , there exist points q′
1,q′

2 ∈ O (q, φ) ∩ Σ such that

∣∣q′
1

∣∣ < lε < a/4 and
∣∣q′

2 − Q N v0
∣∣ < lε < a/4.

et q′
1 = (0, v1, w1) and q′

2 = (0, v2, w2). Since these points belong to the same trajectory that is
ontained in U , |v1| = |v2|. At the same time,

|v1| < a/4,
∣∣v2 − Q N v0

∣∣ < a/4, and
∣∣Q N v0

∣∣ = a,

nd we get a contradiction which proves our lemma. �
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To complete the proof of Theorem 1, we show that any vector field

X ∈ Int1(OrientSh \ B)

has property (KS2).
To get a contradiction, let us assume that there exist trajectories p,q ∈ Per(X) for which the un-

stable manifold W u(q) and the stable manifold W s(p) have a point r of nontransverse intersection
We have to consider separately the following two cases.

Case (B1): p and q are rest points of the flow φ.
Case (B2): either p or q is a closed trajectory.

Case (B1). Since X /∈ B, we may assume (after an additional perturbation, if necessary) that the
eigenvalues λ1, . . . , λu with Reλ j > 0 of the Jacobi matrix D X(p) have the following property:

Reλ j > λ1 > 0, j = 2, . . . , u

(where u is the dimension of W u(p)). This property means that there exists a one-dimensional “di-
rection of weakest expansion” in W u(p).

If this is not the case, then our assumption that X /∈ B implies that the eigenvalues μ1, . . . ,μs

with Reμ j < 0 of the Jacobi matrix D X(q) have the following property:

Reμ j < μ1 < 0, j = 2, . . . , s

(where s is the dimension of W s(q)). If this condition holds, we reduce the problem to the previous
case by passing from the field X to the field −X (clearly, the fields X and −X have the oriented
shadowing property simultaneously).

Making a perturbation (in this part of the proof, we always assume that the perturbed field belongs
to the set OrientSh \ B), we may “linearize” the field X in a neighborhood U of the point p; thus
trajectories of X in U are governed by a differential equation

ẋ = P x,

where

P = diag(P s, Pu), Pu = diag(λ, P1), λ > 0, (8)

P1 is a (u − 1) × (u − 1) matrix for which there exist constants K > 0 and μ > λ such that

∥∥exp(−P1t)
∥∥ � K −1 exp(−μt), t � 0, (9)

and Reλ j < 0 for the eigenvalues λ j of the matrix P s .
Let us explain how to perform the above-mentioned perturbations preserving the nontransversality

of W u(q) and W s(p) at the point r (we note that a similar reasoning can be used in “replacement”
of a component of intersection of W u(q) with a transverse section Σ by an affine space, see the text
preceding Lemma 2 below).

Consider points r∗ = φ(τ , r), where τ > 0, and r′ = φ(τ ′, r), where τ ′ ∈ (0, τ ). Let Σ and Σ∗ be
small transverse sections that contain the points r and r∗ . Take small neighborhoods V and U ′ of p
and r′ , respectively, so that the set V does not intersect the “tube” formed by pieces of trajectories
through points of U ′ whose endpoints belong to Σ and Σ∗ . In this case, if we perturb the vector
field X in V and apply the Pugh–Robinson perturbation in U ′ , these perturbations are “independent.”

We perturb the vector field X in V obtaining vector fields X ′ that are linear in small neighbor-
hoods V ′ ⊂ V and such that the values ρ1(X, X ′) are arbitrarily small.
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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Let γs and γ ∗
s be the components of intersection of the stable manifold W s(p) (for the field X )

ith Σ and Σ∗ that contain the points r and r∗ , respectively.
Since the stable manifold of a hyperbolic rest point depends (on its compact subsets) C1-smoothly

n C1-small perturbations, the stable manifolds W s(p) (for the perturbed fields X ′) contain compo-
ents γ ′

s of intersection with Σ∗ that converge (in the C1 metric) to γ ∗
s .

Now we apply the Pugh–Robinson perturbation in U ′ and find a field X ′ in an arbitrary C1-
eighborhood of X such that the local Poincaré transformation generated by the field X ′ and sections

and Σ∗ takes γ ′
s to γs (which means that the nontransversality at r is preserved).

We introduce in U coordinates x = (y; v, w) according to (8): y is coordinate in the s-dimensional
stable” subspace (denoted Es); (v, w) are coordinates in the u-dimensional “unstable” subspace (de-
oted Eu). The one-dimensional coordinate v corresponds to the eigenvalue λ (and hence to the
ne-dimensional “direction of weakest expansion” in Eu).

In the neighborhood U ,

φ
(
t, (y, v, w)

) = (
exp(P st)y;exp(λt)v,exp(P1t)w

)
,

nd it follows from (9) that ∣∣exp(P1t)w
∣∣ � K exp(μt)|w|, t � 0. (10)

enote by Eu
1 the one-dimensional invariant subspace corresponding to λ.

We naturally identify Es ∩ U and Eu ∩ U with the intersections of U with the corresponding local
table and unstable manifolds of p, respectively.

Let us construct a special transverse section for the flow φ. We may assume that the point r
f nontransverse intersection of W u(q) and W s(p) belongs to U . Take a hyperplane Σ ′ in Es of
imension s − 1 that is transverse to the vector X(r). Set Σ = Σ ′ + Eu ; clearly, Σ is transverse
o X(r).

By a perturbation of the field X outside U , we may get the following: in a neighborhood of r, the
omponent of intersection W u(q) ∩ Σ containing r (for the perturbed field) has the form of an affine
pace r + L, where L is the tangent space, L = Tr(W u(q) ∩ Σ), of the intersection W u(q) ∩ Σ at the
oint r for the unperturbed field (compare, for example, with [7]).

Let Σr be a small transverse disk in Σ containing the point r. Denote by γ the component of
tersection of W u(q) ∩ Σr containing r.

emma 2. There exists ε > 0 such that if x ∈ Σr and

dist
(
φ(t, x), O −(r, φ)

)
< ε, t � 0, (11)

hen x ∈ γ .

roof. To simplify presentation, let us assume that q is a rest point; the case of a closed trajectory is
onsidered using a similar reasoning.

By the Grobman–Hartman theorem, there exists ε0 > 0 such that the flow of X in B(2ε0,q) is
opologically conjugate to the flow of a linear vector field.

Denote by A the intersection of the local stable manifold of q, W s
loc(q), with the boundary of the

all B(2ε0,q).
Take a negative time T such that if s = φ(T , r), then

φ(t, s) ∈ B(ε0,q), t � 0. (12)

learly, if ε0 is small enough, then the compact sets A and

B = {
φ(t, r): T � t � 0

}
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are disjoint. There exists a positive number ε1 < ε0 such that the ε1-neighborhoods of the sets A and
B are disjoint as well.

Take ε2 ∈ (0, ε1). There exists a neighborhood V of the point s with the following property: if
y ∈ V \ W u

loc(q), then the first point of intersection of the negative semitrajectory of y with the
boundary of B(2ε0,q) belongs to the ε2-neighborhood of the set A (this statement is obvious for
a neighborhood of a saddle rest point of a linear vector field; by the Grobman–Hartman theorem, it
holds for X as well).

Clearly, there exists a small transverse disk Σs containing s and such that if y ∈ Σs ∩ W u
loc(q), then

the first point of intersection of the positive semitrajectory of y with the disk Σr belongs to γ (in
addition, we assume that Σs belongs to the chosen neighborhood V ).

There exists ε ∈ (0, ε1 − ε2) such that the flow of X generates a local Poincaré transformation

σ :Σr ∩ B(ε, r) → Σs.

Let us show that this ε has the desired property. It follows from our choice of Σs and (11) with t = 0
that if x /∈ γ , then

y := σ(x) ∈ Σs \ W u
loc(q);

in this case, there exists τ < 0 such that the point z = φ(τ , y) belongs to the intersection of B(ε2, A)

with the boundary of B(2ε0,q). By (12),

dist
(
z, φ(t, s)

)
> ε0, t � 0. (13)

At the same time,

dist
(
z, φ(t, r)

)
> ε1 − ε2, T � t � 0. (14)

Inequalities (13) and (14) contradict condition (11). Our lemma is proved. �
Now let us formulate the property of nontransversality of W u(q) and W s(p) at the point r in

terms of the introduced objects.
Let Πu be the projection to Eu parallel to Es .
The transversality of W u(q) and W s(p) at r means that

Tr W u(q) + Tr W s(p) = Rn.

Since Σ is a transverse section to the flow φ at r, the above equality is equivalent to the equality

L + Es = Rn.

Thus, the nontransversality means that

L + Es �= Rn,

which implies that

L′ := Πu L �= Eu . (15)

We claim that there exists a linear isomorphism J of Σ for which the norm ‖ J − Id‖ is arbitrarily
small and such that

Πu J L ∩ Eu
1 = {0}. (16)
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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et e be a unit vector of the line Eu
1 . If e /∈ L′ , we have nothing to prove (take J = Id). Thus, we

ssume that e ∈ L′ . Since L′ �= Eu , there exists a vector v ∈ Eu \ L′ .
Fix a natural number N and consider a unit vector v N that is parallel to Ne + v . Clearly, v N → e

s N → ∞. There exists a sequence T N of linear isomorphisms of Eu such that T N v N = e and

‖T N − Id‖ → 0, N → ∞.

ote that T −1
N e is parallel to v N ; hence, T −1

N e does not belong to L′ , and

T NΠu L ∩ Eu
1 = {0}. (17)

efine an isomorphism J N of Σ by

J N(y, z) = (y, T N z)

nd note that

‖ J N − Id‖ → 0, N → ∞.

et LN = J N L. Equality (17) implies that

Πu LN ∩ Eu
1 = {0}. (18)

ur claim is proved.
First we consider the case where dim Eu � 2. Since dim L′ < dim Eu by (15) and dim Eu

1 = 1, our
easoning above (combined with a Pugh–Robinson perturbation) shows that we may assume that

L′ ∩ Eu
1 = {0}. (19)

or this purpose, we take a small transverse section Σ ′ containing the point r′ = φ(−1, r), denote by
the component of intersection of W u(q) with Σ ′ containing r′ , and note that the local Poincaré

ransformation σ generated by Σ ′ and Σ takes γ to the linear space L (in local coordinates of Σ ).
he mapping σN = J Nσ is C1-close to σ for large N and takes γ to LN for which equality (18) is
alid. Thus, we get equality (19) for the perturbed vector field.

This equality implies that there exists a constant C > 0 such that if (y; v, w) ∈ r + L, then

|v| � C |w|. (20)

Fix a > 0 such that B(4a, p) ⊂ U . Take a point α = (0;a,0) ∈ Eu
1 and a positive number T and set

T = (ry;a exp(−λT ),0), where ry is the y-coordinate of r. Construct a pseudotrajectory as follows:

g(t) =
{

φ(t, r), t � 0,

φ(t,αT ), t > 0.

ince

|r − αT | = a exp(−λT ) → 0

s T → ∞, for any d there exists T such that g is a d-pseudotrajectory.
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
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Lemma 3. Assume that b ∈ (0,a) satisfies the inequality

log K − log C +
(

μ

λ
− 1

)(
log

a

2
− log b

)
� 0.

Then for any T > 0, reparametrization h, and a point s ∈ r + L such that |r − s| < b there exists τ ∈ [0, T ]
such that

∣∣φ(
h(τ ), s

) − g(τ )
∣∣ � a

2
.

Proof. To get a contradiction, assume that

∣∣φ(
h(τ ), s

) − g(τ )
∣∣ <

a

2
, τ ∈ [0, T ]. (21)

Let s = (y0; v0, w0) ∈ r + L. Since |r − s| < b,

|v0| < b. (22)

By (21),

φ
(
h(τ ), s

) ∈ U , τ ∈ [0, T ].

Take τ = T in (21) to show that

|v0|exp
(
λh(T )

)
>

a

2
.

It follows that

h(T ) > λ−1
(

log
a

2
− log |v0|

)
. (23)

Set θ(τ ) = |exp(P1h(τ ))w0|; then θ(0) = |w0|. By (20),

|v0| � Cθ(0). (24)

By (10),

θ(T ) � K exp
(
μh(T )

)
θ(0). (25)

We deduce from (22)–(25) that

log

(
2θ(T )

a

)
� log θ(T ) − log

∣∣v0 exp
(
λh(T )

)∣∣
� log K + log θ(0) − log |v0| + (μ − λ)h(T )

� log K − log C +
(

μ

λ
− 1

)(
a

2
− log |v0|

)

� log K − log C +
(

μ

λ
− 1

)(
a

2
− log b

)
� 0.
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e get a contradiction with (21) for τ = T since the norm of the w-coordinate of φ(h(T ), s) equals
(T ), while the w-coordinate of g(T ) is 0. The lemma is proved. �

Let us complete the proof of Theorem 1 in case (B1). Assume that l, δ0 > 0 are chosen for Σ so
hat the LE holds.

Take ε ∈ (0,min(δ0, ε0,a/2)) so small that if |y − r| < ε , then φ(t, y) intersects Σ at a point s
uch that

dist
(
φ(t, s), r

)
< ε0, |t| � lε. (26)

onsider the corresponding d and a d-pseudotrajectory g described above.
Assume that

dist
(
φ
(
h(t), x

)
, g(t)

)
< ε, t ∈ R, (27)

r some point x and reparametrization h and set y = φ(h(0), x).
Then |y − r| < ε, and there exists a point s = φ(τ , y) ∈ Σ with |τ | < lε.
If −lε � t � 0, then

dist
(
φ(t, s), O −(r, φ)

)
� ε0

y (26).
If t < −lε, then h(0) + τ + t < h(0), and there exists t′ < 0 such that h(t′) = h(0) + τ + t . In this

ase,

φ(t, s) = φ
(
h(0) + τ + t, x

) = φ
(
h(t′), x

)
,

nd

dist
(
φ(t, s), O −(r, φ)

)
� dist

(
φ
(
h(t′), x

)
, φ(t′, r)

)
� ε0.

By Lemma 2, s ∈ r + L. If ε is small enough, then |s − r| < b, where b satisfies the condition of
emma 3, whose conclusion contradicts (27).

This completes the consideration of case (B1) for dim W u(p) � 2. If dim W u(p) = 1, then the
ontransversality of W u(q) and W s(p) implies that L ⊂ Es . This case is trivial since any shadowing
rajectory passing close to r must belong to the intersection W u(q) ∩ W s(p), while we can construct

pseudotrajectory “going away” from p along W u(p). If dim W u(p) = 0, W u(q) and W s(p) cannot
ave a point of nontransverse intersection.

Case (B2). Passing from the vector field X to −X , if necessary, we may assume that p is a closed
rajectory. We “linearize” X in a neighborhood of p as described in the proof of Lemma 1 so that the
cal Poincaré transformation of transverse section Σ is a linear mapping generated by a matrix P
ith the following properties: With respect to some coordinates in Σ ,

P = diag(P s, Pu), (28)

here |λ j| < 1 for the eigenvalues λ j of the matrix P s , and |λ j| > 1 for the eigenvalues λ j of the
atrix Pu , every eigenvalue has multiplicity 1, and P is in a Jordan form.

The same reasoning as in case (B1) shows that it is possible to perform such a “linearization”
and other perturbations of X performed below) so that the nontransversality of W u(q) and W s(p)

preserved.
Consider an eigenvalue λ of Pu such that |λ| � |μ| for the remaining eigenvalues μ of Pu .
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
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We treat separately the following two cases.

Case (B2.1): λ ∈ R.
Case (B2.2): λ ∈ C \ R.

Case (B2.1). Applying a perturbation, we may assume that

Pu = diag(λ, P1),

where |λ| < |μ| for the eigenvalues μ of the matrix P1 (thus, there exists a one-dimensional direction
of “weakest expansion” in W u(p)). In this case, we apply precisely the same reasoning as that applied
to treat case (B1) (we leave details to the reader).

Case (B2.2). Applying one more perturbation of X , we may assume that

λ = ν + iη = ρ exp

(
2πm1i

m

)
,

where m1 and m are relatively prime natural numbers, and

Pu = diag(Q , P1),

where

Q =
(

ν −η
η ν

)

with respect to some coordinates (y, v, w) in Σ , where ρ = |λ| < |μ| for the eigenvalues μ of the
matrix P1.

Denote

Es = {
(y,0,0)

}
, Eu = {

(0, v, w)
}
, Eu

1 = {
(0, v,0)

}
.

Thus, Es is the “stable subspace,” Eu is the “unstable subspace,” and Eu
1 is the two-dimensional “un-

stable subspace of the weakest expansion.”
Geometrically, the Poincaré transformation σ :Σ → Σ (extended as a linear mapping to Eu

1 ) acts
on Eu

1 as follows: the radius of a point is multiplied by ρ , while 2πm1/m is added to the polar angle
As in the proof of Lemma 1, we take a small neighborhood W of the origin of the transverse

section Σ so that, for points x ∈ W , the function α(x) (the time of first return to Σ ) is defined.
We assume that the point r of nontransverse intersection of W u(q) and W s(p) belongs to the

section Σ . Similarly to case (B1), we perturb X so that, in a neighborhood of r, the component of
intersection of W u(q) ∩ Σ containing r has the form of an affine space, r + L.

Let Πu be the projection in Σ to Eu parallel to Es , and let Πu
1 be the projection to Eu

1 ; thus,

Πu(y, u, v) = (0, u, v) and Πu
1 (y, u, v) = (0, u,0).

The nontransversality of W u(q) and W s(p) at r means that

L′ = Πu L �= Eu

(see case (B1)). Applying a reasoning similar to that in case (B1), we perturb X so that if L′′ = L′ ∩ Eu
1

then

dim L′′ < dim Eu
1 = 2.
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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ence, either dim L′′ = 1 or dim L′′ = 0. We consider only the first case, the second one is trivial.
Denote by A the line L′′ . Images of A under degrees of σ (extended to the whole plane Eu

1 ) are m
ifferent lines in Eu

1 .
In what follows, we refer to an obvious geometric statement (given without a proof).

roposition 1. Consider Euclidean space Rn with coordinates (x1, . . . , xn). Let x′ = (x1, x2), x′′ = (x3, . . . , xn),
nd let G be the plane of coordinate x′ . Let D be a hyperplane in Rn such that

D ∩ G = {x2 = 0}.

or any b > 0 there exists c > 0 such that if x = (x′, x′′) ∈ D and x′ = (x′
1, x′

2), then either |x′
2| � b|x′

1| or
′′| � c|x′|.

Take a > 0 such that the 2a-neighborhood of the origin in Σ belongs to W . We may assume that
v = (v1, v2), then the line A is {v2 = 0}.
Take b > 0 such that the images of the cone

C = {
v: |v2| � b|v1|

}
Eu

1 under degrees of σ intersect only at the origin (denote these images by C1, . . . , Cm).
We apply Proposition 1 to find a number c > 0 such that if (0, v, w) ∈ L′ , then either (0, v,0) ∈ C

r

|w| � c|v|. (29)

Take a point β = (0, v,0) ∈ Σ , where |v| = a, such that β /∈ C1 ∪ · · · ∪ Cm .
For a natural number N , set βN = (ry, P−N

u (v,0)) ∈ Σ (we recall that equality (28) holds), where ry

the y-coordinate of r. We naturally identify β and βN with points of M and consider the following
seudotrajectory:

g(t) =
{

φ(t, r), t � 0;
φ(t, βN), t > 0.

The following statement (similar to Lemma 2) holds: there exists ε0 > 0 such that if

dist
(
φ(t, s), O −(r, φ)

)
< ε0, t � 0,

r some point s ∈ Σ , then s ∈ r + L.
Since β does not belong to the closed set C1 ∪ · · · ∪ Cm , we may assume that the disk in Eu

1
entered at β and having radius ε0 does not intersect the set C1 ∪ · · · ∪ Cm .

Define numbers

α1(N) = α(βN), α2(N) = α1(N) + α
(
σ(βN)

)
, . . . , αN(N) = αN−1(N) + α

(
σ N−1(βN)

)
.

Take δ0 and l for which LE holds for the neighborhood W (reducing W , if necessary). Take
< min(ε0/l, δ0) and assume that there exists the corresponding d (from the definition of the class
rientSh). Take N so large that g is a d-pseudotrajectory.

Let h be a reparametrization; assume that

∣∣φ(
h(t), p0

) − g(t)
∣∣ < ε, 0 � t � αN(N),

r some point p0 ∈ Σ .
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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Since g(αk(N)) ∈ Σ for 0 � k � N by construction, there exist numbers χk such that

∣∣σχk (p0) − g
(
αk(N)

)∣∣ < ε0, 0 � k � N.

To complete the proof of Theorem 1, let us show that for any p0 ∈ r + L and any reparametrization
h there exists t ∈ [0,αN (N)] such that

dist
(
φ
(
h(t), p0

)
, g(t)

)
� ε.

Assuming the contrary, we see that

∣∣σχk (p0) − g
(
αk(N)

)∣∣ < ε0, 0 � k � N,

where the numbers χk were defined above.
We consider two possible cases.
If

Πu
1 p0 ∈ C

(C is the cone defined before estimate (29)), then

Πu
1 σχk (p0) ∈ C1 ∪ · · · ∪ Cm.

By construction, Πu
1 g(αN(N)) is β . Hence,

∣∣Πu
1 σχN (p0) − Πu

1 g
(
αN(N)

)∣∣ > ε0,

and we get the desired contradiction.
If

Πu
1 p0 /∈ C

and p0 = (y0, v0, w0), then (0, v0, w0) ∈ L′ , and it follows from (29) that |w0| � c|v0|. In this case
decreasing ε0, if necessary, we apply the reasoning similar to Lemma 3.

Thus, we have shown that

Int1(OrientSh \B) ⊂ Int1(KS) = S. (30)

It was shown in [13] that S ⊂ StSh; since the set S is C1-open and S ∩ B = ∅,

S ⊂ Int1(StSh\B) ⊂ Int1(OrientSh\B). (31)

Inclusions (30) and (31) prove Theorem 1.
By Lemma 1, if X ∈ Int1(OrbitSh), then X ∈ Int1(T ). For nonsingular flows, the latter inclusion

implies that X is Ω-stable [14] (note that this is not the case for flows with rest points [15]). Now
based on the second part of the proof of Theorem 1, one easily proves Theorem 3 following the same
lines as in [4, Theorem 4].
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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. Proof of Theorem 2

Consider a vector field X∗ on the manifold M = S2 × S2 that has the following properties (F1)–(F3)
φ∗ denotes the flow generated by X∗).

F1) The nonwandering set of φ∗ is the union of four rest points p∗ , q∗ , s∗ , u∗ .
F2) For some δ > 0 we can introduce coordinates in the neighborhoods B(δ, p∗) and B(δ,q∗) such

that

X∗(x) = J∗
p(x − p∗), x ∈ B(δ, p∗), and X∗(x) = J∗

q (x − q∗), x ∈ B(δ,q∗),

where

J∗
p = − J∗

q =
⎛
⎜⎝

−1 0 0 0
0 −2 0 0
0 0 1 −1
0 0 1 1

⎞
⎟⎠ .

F3) The point s∗ is an attracting hyperbolic rest point. The point u∗ is a repelling hyperbolic rest
point. The following condition holds:

W u(p∗) \ {p∗} ⊂ W s(s∗), W s(q∗) \ {q∗} ⊂ W u(u∗). (32)

The intersection of W s(p∗) ∩ W u(q∗) consists of a single trajectory α∗ , and for any x ∈ α∗ , the
condition

dim TxW s(p∗) ⊕ TxW u(q∗) = 3 (33)

holds.

These conditions imply that the two-dimensional manifolds W s(p∗) and W u(q∗) intersect along
one-dimensional curve in the four-dimensional manifold M . Thus, W s(p∗) and W u(q∗) are not

ransverse; hence, X∗ ∈ B.
A construction of such a vector field is given in Appendix A.
To prove Theorem 2, we show that X∗ ∈ Int1(OrientSh).
The vector field X∗ satisfies Axiom A and the no-cycle condition; hence, X∗ is Ω-stable. Thus,

here exists a neighborhood V of X∗ in the C1-topology such that for any field X ∈ V , its nonwan-
ering set consists of four hyperbolic rest points p, q, s, u which belong to small neighborhoods of
∗ , q∗ , s∗ , u∗ , respectively. We denote by φ the flow of any X ∈ V and by W s(p), W u(p), etc. the
orresponding stable and unstable manifolds.

Note that if the neighborhood V is small enough, then there exists a number c > 0 (the same for
ll X ∈ V ) such that

B(c, s∗) ⊂ W s(s) and B(c, u∗) ⊂ W u(u).

onsider the set Θ = W u(p∗) ∩ ∂ B(δ, p∗) (where ∂ A is the boundary of a set A). Condition (32)
plies that there exist a neighborhood UΘ of Θ and a number T > 0 such that

φ∗(T , x) ∈ B(c/2, s∗), x ∈ UΘ.

educing V , if necessary, we may assume that

W u(p) ∩ ∂ B(δ, p) ⊂ UΘ and φ(T , x) ∈ B(c, s∗), x ∈ UΘ.
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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Hence, W u(p) \ {p} ⊂ W s(s), and

W u(p) ∩ W s(q) = ∅. (34)

Similarly, we may assume that W s(q) \ {q} ⊂ W u(u).
The following two cases are possible for X ∈ V .

(S1) W s(p) ∩ W u(q) = ∅.
(S2) W s(p) ∩ W u(q) �= ∅.

In case (S1), X is a Morse–Smale field; hence, X ∈ S. Since S ⊂ StSh (see [13]), X ∈ OrientSh.

Remark 1. In fact, it is shown in [13] that if a vector field X ∈ S does not have closed trajectories (as
in our case), then X has the Lipschitz shadowing property without reparametrization of shadowing
trajectories: there exists L > 0 such that if g(t) is a d-pseudotrajectory with small d, then there exists
a point x such that

dist
(

g(t),φ(t, x)
)
� Ld, t ∈ R.

We refer to this fact below.

Thus, in the rest of the proof of Theorem 2, we consider case (S2). Our goal is to show that if the
neighborhood V is small enough, then X ∈ OrientSh.

Lemma 4. If the neighborhood V is small enough, then the intersection W s(p) ∩ W u(q) consists of a single
trajectory.

Proof. Denote x∗
p = α∗ ∩ ∂ B(δ, p∗) and x∗

q = α∗ ∩ ∂ B(δ,q∗).
Consider sections Q p and Q q transverse to α at the points x∗

p and x∗
q , respectively, and the cor-

responding Poincaré map F ∗ : Q q → Q p . Consider the curves ξ∗
p = W s(p∗) ∩ Q p ∩ B(δ/2, x∗

p) and
ξ∗

q = W s(q∗) ∩ Q q ∩ B(δ/2, x∗
q). Note that ξ∗

p and F ∗(ξ∗
q ) intersect at a single point x∗

p .
Let ξp = W s(p) ∩ Q p ∩ B(δ/2, x∗

p) and ξq = W u(q) ∩ Q q ∩ B(δ/2, x∗
q). Let F be the Poincaré trans-

formation for X from Q q to Q p similar to F ∗ .
If the neighborhood V is small enough, then the curves ξp , ξq , and F (ξq) are C1-close to ξ∗

p , ξ∗
q

and F ∗(ξ∗
q ), respectively (hence, the intersection of ξp and F (ξq) contains not more than one point).

The same reasoning as in the proof of (34) shows that if the neighborhood V is small enough
x ∈ W s(p) \ {p}, and the trajectory of x does not intersect ξp , then x ∈ W u(u).

Thus, any trajectory in W s(p) ∩ W u(q) must intersect ξp ; similarly, it must intersect ξq as well as
F (ξq).

It follows that the intersection W s(p) ∩ W u(q) (which is nonempty since we consider case (S2))
consists of a single trajectory containing the unique point xp of intersection of ξp and F (ξq) (we
denote this trajectory by α). This completes the proof of Lemma 4. �
Remark 2. Let us note an important property of intersection of W s(p) and W u(q) along α (see (36)
below).

Let xq = F −1(xp); denote by ip and iq unit tangent vectors to the curves ξp and ξq at xp and xq , re-
spectively. Our reasoning above and condition (33) show that if the neighborhood V is small enough
then the vectors ip and D F (xq)iq are not parallel:

D F (xq)iq ∦ ip . (35)

Take any two points yp = φ(t1, xp) and yq = φ(t2, xq) with t1 � 0, t2 � 0; let S p and Sq be smooth
transversals to α at these points. Let ep and eq be tangent vectors of S p ∩ W s(p) and Sq ∩ W u(q) at
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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p and yq , respectively. Denote by f : Sq → S p , H p : Q p → S p , and Hq : Sq → Q q the corresponding
oincaré transformations for X . Then f = H p ◦ F ◦ Hq ,

ep ‖ D H p(xp)ip, and eq ‖ D H−1
q (xq)iq.

ence, D f (yq)eq ‖ D H p ◦ D F (xq)iq , and it follows from (35) that

D f (yq)eq ∦ ep . (36)

Now it remains to show that if V is small enough and X ∈ V , then X ∈ OrientSh (recall that we
onsider case (S2)). This proof is rather complicated, and we first describe its scheme.

We fix two points yp, yq ∈ α in small neighborhoods U p and Uq of p and q, respectively (the
hoice of U p and Uq is specified later). We consider special pseudotrajectories (of type Ps): the “mid-
le” part of such a pseudotrajectory is the part of α between yq and yp , while its “negative” and
positive” tails are parts of trajectories that start near yq and yp , respectively. We show that our
hadowing problem is reduced to shadowing of pseudotrajectories of type Ps.

The key part of the proof is a statement “on four balls.” It is shown that if B1, . . . , B4 are small
alls such that B1 and B4 are centered at points of W s(q) and W u(p), while B2 and B3 are centered
t yq and yp , respectively, then there exists an exact trajectory that intersects B1, . . . , B4 successfully
s time grows. This statement (and its analog) allows us to prove that pseudotrajectories of type Ps
an be shadowed.

Let us fix points yp, yq ∈ α (everywhere below, we assume that yp = α(T p) and yq = α(Tq) with
p > Tq) and a number δ > 0. We say that g(t) is a pseudotrajectory of type Ps(δ) if

g(t) =
⎧⎨
⎩

φ(t − T p, xp), t > T p,

φ(t − Tq, xq), t < Tq,

α(t), t ∈ [Tq, T p],
(37)

r some points

xp ∈ B(δ, yp) and xq ∈ B(δ, yq).

Fix an arbitrary ε > 0. We prove the following two statements (Propositions 2 and 3). In these
tatements, we say that a pseudotrajectory g(t) can be ε-shadowed if there exist a reparametrization

and a point p such that (2) holds.
An Ω-stable vector field has a continuous Lyapunov function that strictly decreases along wan-

ering trajectories (see [16]). Hence, there exist small neighborhoods U p and Uq of points p and q,
espectively, such that

φ(t, x) /∈ Uq, x ∈ U p, t � 0. (38)

roposition 2. For any δ > 0, yp ∈ α ∩ U p , and yq ∈ α ∩ Uq there exists d > 0 such that if g(t) is a d-
seudotrajectory of X , then either g(t) can be ε-shadowed or there exists a pseudotrajectory g∗(t) of type
s(δ) with these yp and yq such that dist(g(t), g∗(t)) < ε/2, t ∈ R.

roposition 3. There exist δ > 0, yp ∈ α ∩ U p , and yq ∈ α ∩ Uq such that any pseudotrajectory of type Ps(δ)
ith these yp and yq can be ε/2-shadowed.

Clearly, Propositions 2 and 3 imply that X ∈ OrientSh.
To prove Proposition 2, we need an auxiliary statement.
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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Lemma 5. For any x ∈ α and ε, ε1 > 0 there exists d > 0 such that if{
g(t): t ∈ R

} ∩ B(ε1, x) = ∅, (39)

for a d-pseudotrajectory g(t), then one can find x0 ∈ M and h(t) ∈ Rep such that

dist
(

g(t),φ
(
h(t), x0

))
< ε, t ∈ R.

Proof. Take � < ε1/2 such that if ap = φ(1, x) and aq = φ(−1, x), then ap,aq /∈ B(�, x). Let S p and
Sq be three-dimensional transversals to α at ap and aq , respectively. Let f : Sq → S p be the corre-
sponding Poincaré mapping. Note that the intersections W u(q) ∩ Sq and W s(p) ∩ S p near aq and ap
are one-dimensional, hence the curves f (W u(q) ∩ Sq) and W s(p) ∩ S p in S p are nontransverse.

It is shown in [11,17] that there exists an arbitrarily small perturbation of the field X supported
in B(�, x) and such that the Poincaré mapping f̃ : Sq → S p of the perturbed field X̃ satisfies the
condition

f̃
(
W u(q) ∩ Sq

) ∩ (
W s(p) ∩ S p

) = ∅.

Similarly to case (S1), we conclude that we can find X̃ ∈ S.
Set ε2 = min(ε, ε1/2) and find d > 0 such that any d-pseudotrajectory of the field X̃ can be ε2-

shadowed. We assume, in addition, that

� + d < ε1. (40)

Consider an arbitrary d-pseudotrajectory g(t) of X for which (39) holds. By (40), g(t) is a d-pseudo-
trajectory of the field X̃ . Due to the choice of d, there exist x0 ∈ M and h(t) ∈ Rep such that

dist
(

g(t), φ̃
(
h(t), x0

))
< ε2,

where φ̃ is the flow of X̃ . Hence, {φ̃(h(t), x0), t ∈ R} ∩ B(ε1, x) = ∅; it follows that φ̃(h(t), x0) =
φ(h(t), x0), which proves Lemma 5. �
Proof of Proposition 2. Take δ > 0, yp ∈ α ∩ U p , and yq ∈ α ∩ Uq . Let yq = α(Tq) and yp = α(T p)

There exists δ1 ∈ (0,min(δ, ε)) such that B(δ1, yp) ⊂ U p , B(δ1, yq) ⊂ Uq , and if xp ∈ B(δ1, yp) and
xq ∈ B(δ1, yq), then

g∗(t) =
⎧⎨
⎩

φ(t − T p, xp), t > T p,

α(t), t ∈ [Tq, T p],
φ(t − Tq, xq), t < Tq,

(41)

is a pseudotrajectory of type Ps(δ).
Take x = α(T ), where T ∈ (Tq, T p). Applying Lemma 5, we can find ε1 > 0 such that if d is smal

enough, then for any d-pseudotrajectory g(t), one of the following two cases holds (after a shift of
time):

(A1)
{

g(t), t ∈ R
} ∩ B(ε1, x) = ∅,

and g(t) can be ε-shadowed;

(A2) g(T p) ∈ B(δ1/2, yp), g(Tq) ∈ B(δ1/2, yq),

and

dist
(

g(t),α(t)
)
< ε/2, t ∈ [Tq, T p].

To prove Proposition 2, it remains to consider case (A2).
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
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Apply the same reasoning as in Lemma 5 to construct a field X̃ ∈ S that coincides with X outside
(δ1/2, yq); let φ̃ be the flow of X̃ .

Note that X̃ does not have closed trajectories. Reducing d, if necessary, we may assume that any
-pseudotrajectory of X̃ can be δ1/2-shadowed in the sense of Remark 1.

Consider the mapping

g̃p(t) =
⎧⎨
⎩

φ̃(t − T p, g(T p)), t < T p,

g(t), t ∈ [T p, T ],
φ̃(t − T , g(T )), t > T ,

here

T = inf
{

t > T p: g̃p(t) ∈ B(δ1, yq)
}

if {t > T p: g̃p(t) ∈ B(δ1, yq)} = ∅, we set T = +∞). Since

B
(
δ1/2, g(t)

) ∩ B(δ1/2, yq) = ∅

r t ∈ [T p, T ), g̃p(t) is a d-pseudotrajectory of X̃ . Hence, there exists a point xp such that

dist
(

g̃p(t), φ̃(t − T p, xp)
)
< δ1/2, t ∈ R.

he first inclusion in (A2) implies that xp ∈ B(δ, yp).
Since trajectories of X and X̃ coincide outside B(δ1/2, yq), we deduce from (38) that T = +∞;

ence,

dist
(

g(t),φ(t − T p, xp)
)
< δ1/2, t � T p .

Similarly (reducing d, if necessary), we find xq ∈ B(δ, yq) such that

dist
(

g(t),φ(t − Tq, xq)
)
< δ1/2, t � Tq.

Clearly, the mapping (41) is a pseudotrajectory of type Ps(δ) such that

dist
(

g(t), g∗(t)
)
< ε/2, t ∈ R.

his completes the proof of Proposition 2. �
In the remaining part of the paper, we prove Proposition 3. Let us recall that we consider a vector

eld X in a small neighborhood V of X∗ for which W s(p) ∩ W u(q) �= ∅.
Without loss of generality, we may assume that

O +(
B(ε/2, s),φ

) ⊂ B(ε, s) and O −(
B(ε/2, u),φ

) ⊂ B(ε, u).

Take m ∈ (0, ε/8) such that B(m, p) ⊂ U p , B(m,q) ⊂ Uq and the flow of the vector field X in the
eighborhoods B(2m, p) and B(2m,q) is conjugate by a homeomorphism to the flow of a linear vector
eld.

We take points yp = α(T p) ∈ B(m/2, p) ∩ α and yq = α(Tq) ∈ B(m/2,q) ∩ α. Then O +(yp, φ) ⊂
(m, p) and O −(yq, φ) ⊂ B(m,q). Take δ > 0 such that if g(t) is a pseudotrajectory of type Ps(δ)

with yp and yq fixed above), t0 ∈ R, and x0 ∈ B(2δ, g(t0)), then
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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dist
(
φ(t − t0, x0), g(t)

)
< ε/2, |t − t0| � T + 1, (42)

where T = T p − Tq .
Consider a number τ > 0 such that if x ∈ W u(p) \ B(m/2, p), then φ(τ , x) ∈ B(ε/8, s). Take ε1 ∈

(0,m/4) such that if two points z1, z2 ∈ M satisfy the inequality dist(z1, z2) < ε1, then

dist
(
φ(t, z1),φ(t, z2)

)
< ε/8, |t| � τ .

In this case, for any y ∈ B(ε1, x) (recall that we consider x ∈ W u(p) \ B(m/2, p)), the following in-
equalities hold:

dist
(
φ(t, x),φ(t, y)

)
< ε/4, t � 0. (43)

Reducing ε1, if necessary, we may assume that if x′ ∈ W s(q) \ B(m/2,q) and y′ ∈ B(ε1, x′), then

dist
(
φ(t, x′),φ(t, y′)

)
< ε/4, t � 0.

Let g(t) be a pseudotrajectory of type Ps(δ), where δ, yp , and yq satisfy the above-formulated
conditions. We claim that if δ is small enough, then g(t) can be ε/2-shadowed (in fact, we have to
reduce δ and to impose additional conditions on yp and yq). Below we denote W u

loc(p,m) = W u(p)∩
B(m, p), etc.

Additionally decreasing δ, we may assume that for any points zp ∈ W u
loc(p,m), x0 ∈ B(δ, yp), and

s > 0 such that φ(s, x0) ∈ B(δ, zp), the following inclusions hold:

φ(t, x0) ∈ B(2m, p), t ∈ [0, s]. (44)

Let us consider several possible cases.

Case (P1): xp /∈ W s(p) and xq /∈ W u(q). Let

T ′ = inf
{

t ∈ R: φ(t, xp) /∈ B(p,3m/4)
}
.

If δ is small enough, then dist(φ(T ′, xp), W u(p)) < ε1. In this case, there exists a point zp ∈
W u

loc(p,m) \ B(m/2, p) such that

dist
(
φ(T ′, xp), zp

)
< ε1. (45)

Applying a similar reasoning in a neighborhood of q (and reducing δ, if necessary), we find a point
zq ∈ W s

loc(q,m) \ B(m/2,q) and a number T ′′ < 0 such that dist(φ(T ′′, xq), zq) < ε1.
Let us formulate a key lemma which we prove later (precisely this lemma is the above-mentioned

statement “on four balls”).

Lemma 6. There exists m > 0 such that for any points

yp ∈ B(m, p) ∩ α, zp ∈ W u
loc(p,m) \ {p},

yq ∈ B(m,q) ∩ α, zq ∈ W s
loc(q,m) \ {q},

and for any number m1 > 0 there exists a trajectory of the vector field X that intersects successively the balls
B(m1, zq), B(m1, yq), B(m1, yp), and B(m1, zp) as time grows.
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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We reduce m to satisfy Lemma 6 and apply this lemma with m1 = min(δ, ε1). Find a point x0 and
umbers t1 < t2 < t3 < t4 such that

φ(t1, x0) ∈ B(m1, zq), φ(t2, x0) ∈ B(m1, yq),

φ(t3, x0) ∈ B(m1, yp), φ(t4, x0) ∈ B(m1, zp).

equalities (42) imply that if δ is small enough, then

dist
(
φ(t3 + t, x0), g(T p + t)

)
< ε/2, t ∈ [Tq − T p,0]. (46)

efine a reparametrization h(t) as follows:

h(t) =

⎧⎪⎨
⎪⎩

h(Tq + T ′′ + t) = t1 + t, t < 0,

h(T p + T ′ + t) = t4 + t, t > 0,

h(T p + t) = t3 + t, t ∈ [Tq − T p,0],
h(t) increases, t ∈ [T p, T p + T ′] ∪ [Tq + T ′′, Tq].

t � T p + T ′ , then inequality (43) implies that

dist
(
φ
(
h(t), x0

)
, φ

(
t − (T p + T ′), zp

))
< ε/4

nd

dist
(
φ(t − T p, xp),φ

(
t − (T p + T ′), zp

))
< ε/4.

ence, if t � T p + T ′ , then

dist
(
φ
(
h(t), x0

)
, g(t)

)
< ε/2. (47)

clusion (44) implies that for t ∈ [T p, T p + T ′] the inclusions φ(h(t), x0), g(t) ∈ B(m, p) hold, and
equality (47) holds for these t as well.

A similar reasoning shows that inequality (47) holds for t � Tq . If t ∈ [Tq, T p], then inequality (47)
llows from (46). This completes the proof in case (P1).

Case (P2):] xp ∈ W s(p) and xq /∈ W u(q). In this case, Lemma 6 is replaced by the following statement.

emma 7. There exists m > 0 such that for any points

yp ∈ B(m, p) ∩ α, yq ∈ B(m,q) ∩ α, zq ∈ W s
loc(q,m) \ {q},

nd a number m1 > 0 there exists a trajectory of the vector field X that intersects successively the balls
(m1, zq), B(m1, yq), and B(m1, yp) ∩ W s

loc(p,m) as time grows.

The rest of the proof uses the same reasoning as in case (P1).

ase (P3): xp /∈ W s(p) and xq ∈ W u(q). This case is similar to case (P2).

ase (P4): xp ∈ W s(p) and xq ∈ W u(q). In this case, we take α as the shadowing trajectory; the
eparametrization is constructed similarly to case (P1).

Thus, to complete the consideration of case (S2), it remains to prove Lemmas 6 and 7.
To prove Lemma 6, we first fix proper coordinates in small neighborhoods of the points p and q.

et us begin with the case of the point p.
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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Taking a small neighborhood V of the vector field X∗ , we may assume that the Jacobi matrix
J p = D X(p) is as close to J∗

p as we want.
Thus, we assume that p = 0 in coordinates u1 = (x1, x2), u2 = (x3, x4), and J p = diag(A p, B p)

where

Ap =
(−λ1 0

0 −λ2

)
, B p =

(
ap −bp

bp ap

)
, (48)

and

λ1, λ2,ap,bp > 4g, (49)

where g is a small positive number to be chosen later (and a similar notation is used in Uq).
Then we can represent the field X in a small neighborhood U of the point p in the form

X(u1, u2) =
(

Ap 0
0 B p

)(
u1
u2

)
+

(
X12(u1, u2)

X34(u1, u2)

)
, (50)

where

X12, X34 ∈ C1, |X12|C1 , |X34|C1 < g, X12(0,0) = X34(0,0) = (0,0). (51)

Under these assumptions, p = 0 is a hyperbolic rest point whose two-dimensional unstable manifold
in the neighborhood U is given by u2 = G(u1), where G : R2 → R2, G ∈ C1. We can find g > 0 such
that if the functions X12 and X34 satisfy relations (51), then∥∥DG(u1)

∥∥ < 1 while
(
u1, G(u1)

) ∈ U . (52)

We introduce new coordinates in U by v(u1, u2) = (u1, u2 − G(u1)) and use a smooth cut-off function
to extend v to a C1 diffeomorphism w of M such that w(x) = x outside a larger neighborhood U ′ of p
Denote by Y the resulting vector field in the new coordinates.

Remark 3. Note that Y is continuous but not necessary C1. Nevertheless, the following holds. Let S1
and S2 be small smooth three-dimensional disks transverse to a trajectory of Y and let fY be the cor-
responding Poincaré transformation generated by the vector field Y . Consider smooth disks w−1(S1)

and w−1(S2) and let f X : w−1(S1) → w−1(S2) be the corresponding Poincaré transformation. Since
f X ∈ C1 and fY = w ◦ f X ◦ w−1, we conclude that fY ∈ C1. We will use this fact below.

If (v1, v2) = v(u1, u2), then

u1 = v1, u2 = v2 + G(v1). (53)

Let Y (v1, v2) = (Y1(v1, v2), Y2(v1, v2)). Since the surface u2 = G(u1) is a local stable manifold of the
rest point 0 of the field X , the surface v2 = 0 is a local stable manifold of the rest point 0 of the
vector field Y . Hence,

Y2(v1,0) = 0 for (v1,0) ∈ v(U ).

Lemma 8. The inequalities∣∣Y2(v1, v2) − (
Y2(v1,0) + B p v2

)∣∣ � 2g|v2|, (v1, v2) ∈ v(U ), (54)

hold.
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024
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roof. Substitute equalities (53) into (50) to show that

Y2(v1, v2) = B p
(

v2 + G(v1)
) + X34

(
v1, v2 + G(v1)

) − DG(v1)
(

Ap v1 + X12
(

v1, v2 + G(v1)
))

.

elations (51) and (52) imply that

∣∣X34
(

v1, v2 + G(v1)
) − X34

(
v1, G(v1)

)∣∣ � g|v2|

nd

∣∣DG(v1)
(

Ap v1 + X12
(

v1, v2 + G(v1)
)) − DG(v1)

(
Ap v1 + X12

(
v1, G(v1)

))∣∣ � g|v2|.

ence,

∣∣X34
(

v1, v2 + G(v1)
) − X34

(
v1, G(v1)

)
− (

DG(v1)
(

Ap v1 + X12
(

v1, v2 + G(v1)
)) − DG(v1)

(
Ap v1 + X12

(
v1, G(v1)

)))∣∣ � 2g|v2|.

he left-hand side of the above inequality equals |Y2(v1, v2) − (Y2(v1,0) + B p v2)|, which proves
equality (54). �

Note that if yp, yq, zp, zq , and m1 > 0 are fixed, then there exists m∗ > 0 such that if a trajectory
∗ of the vector field Y intersects successfully the balls B(m∗, v(zq)), B(m∗, v(yq)), B(m∗, v(yp)), and
(m∗, v(zp)), then the trajectory w−1(β∗) of X has the property described in Lemma 6.

Thus, it is enough to prove Lemma 6 for the vector field Y . Since the mapping w is smooth, the
ector field Y satisfies condition (36).

To simplify presentation, denote Y by X and its flow by φ. In this notation, there exists a neigh-
orhood U p of p = 0 in which

X(x) =
(

Ap 0
0 B p

)
x + Xp(x), (55)

here X p ∈ C0, and if (x1, x2, x3, x4) ∈ U p , then

∣∣P p
34 Xp(x1, x2, x3, x4)

∣∣ < 2g max
(|x3|, |x4|

)
and P p

34 Xp(x1, x2,0,0) = 0 (56)

where we denote by P p
34 the projection in U p to the plane of variables x3, x4 parallel to the plane

f variables x1, x2). Conditions (56) imply that the plane x3 = x4 = 0 is a local stable manifold for the
ector field X .

Introduce polar coordinates r, ϕ in the plane of variables x3, x4. In what follows (if otherwise is
ot stated explicitly), we use coordinates (x1, x2, r,ϕ). For i ∈ {1,2,3,4, r,ϕ}, we denote by P p

i x the
th coordinate of a point x ∈ U p .

Since the surface W u(p) is smooth and transverse to the plane x3 = x4 = 0, there exist numbers
> 0 and m2 > 0 such that if points x ∈ W u

loc(p,m2) and y ∈ B(m2, p) satisfy the equality P p
34x =

p
34 y, then

dist(x, y) � K dist
(

y, W u
loc(p,m2)

)
. (57)

e reduce the neighborhood U p so that U p ⊂ B(m2, p).
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
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Lemma 9. Let x(t) = (x1(t), x2(t), r(t),ϕ(t)) be a trajectory of the vector field X. The relations

d

dt
r ∈ (

(ap − 4g)r, (ap + 4g)r
)

and
d

dt
ϕ ∈ (bp − 4g,bp + 4g) (58)

hold while x(t) ∈ U p .

Proof. Let x3(t) = P p
3 x(t) and x4(t) = P p

4 x(t). Relations (48), (55) and (56) imply that

d

dt
x3(t) = apx3(t) − bpx4(t) + �3(t)

and

d

dt
x4(t) = bpx3(t) + apx4(t) + �4(t),

where ∣∣�3(t)
∣∣, ∣∣�4(t)

∣∣ < 2gr(t). (59)

Since x3(t) = r(t) cosϕ(t) and x4(t) = r(t) sinϕ(t), we obtain the equalities

r
d

dt
ϕ = rbp + �4(t) cosϕ − �3(t) sinϕ

and

d

dt
r = apr + �3(t) cosϕ + �4(t) sinϕ.

Inequalities (59) imply that

bp − 4g <
d

dt
ϕ < bp + 4g

and

(ap − 4g)r <
d

dt
r < (ap + 4g)r,

which proves our lemma. �
A similar reasoning shows that there exists a neighborhood Uq of the point q in which we can

introduce (after a smooth change of variables) coordinates (y1, y2, y3, y4) (and the corresponding
polar coordinates (r,ϕ) in the plane of variables y3, y4) such that

W u
loc(q,m) ⊂ {y3 = y4 = 0}

and for any trajectory y(t) = (y1(t), y2(t), r(t),ϕ(t)) of the vector field X , the relations

d

dt
r ∈ (

(aq − 4g)r, (aq + 4g)r
)

and
d

dt
ϕ ∈ (−bq − 4g,−bq + 4g)

hold while y(t) ∈ Uq .
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
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Let us continue the proof of Lemma 6.
Let S p ⊂ U p and Sq ⊂ Uq be smooth three-dimensional disks that are transverse to the vector field

and contain the points yp and yq , respectively. Denote by f : Sq → S p the corresponding Poincaré
ransformation (generated by the field X ). We note that f ∈ C1 (see Remark 3) and f (yq) = yp .

Consider the lines lp = S p ∩ W s
loc(p,m) and lq = Sq ∩ W u

loc(q,m) and unit vectors ep ∈ lp and eq ∈ lq .
et P p

34 and P q
34 be the projections to the planes of variables x3, x4 and y3, y4 in the neighborhoods

p and Uq , respectively. Relation (36) implies that

P p
34 D f (yq)eq �= 0 and P q

34 D f −1(yp)ep �= 0. (60)

Take m3 ∈ (0,m1) such that

φ(t, x) ∈ U p, x ∈ B(m3, yp), t ∈ (
0, τp(x)

)
,

nd

φ(t, y) ∈ Uq, y ∈ B(m3, yq), t ∈ (
τq(x),0

)
,

here

τp(x) = inf
{

t > 0: P p
r
(
φ(t, x)

)
� P p

r zp
}
,

τq(x) = sup
{

t < 0: P q
r
(
φ(t, y)

)
� P q

r zq
}
,

nd zp, zq are the points mentioned in Lemma 6.
Consider the surface L p ⊂ S p defined by

Lp = {
x + (y − yp), x ∈ lp, y ∈ f (lq)

}
.

et Lq = f −1L p ⊂ Sq . The surfaces L p and Lq are divided by the lines lp and lq into half-surfaces. Let
+
p and L+

q be any of these half-surfaces.

To any point x ∈ L+
p ∩ f (L+

q ) there correspond numbers rp(x) = P p
r x and rq(x) = P q

r f −1(x); con-

ider the mapping w : L+
p ∩ f (L+

q ) → R2 defined by w(x) = (rp(x), rq(x)). We claim that there exists a
eighborhood U L ⊂ L+

p ∩ f (L+
q ) of the point yp on which the mapping w is a homeomorphism onto

s image.
Let r0 and ϕ0 be the polar coordinates of the vector P p

34 D f (yq)eq . Relation (60) implies that r0 �= 0.
ence, there exists a neighborhood Vq of the point yq in Sq such that if y ∈ Vq , then

P p
r D f (y)eq ∈ [r0/2,2r0] and P p

ϕ D f (y)eq ∈ [ϕ0 − π/8,ϕ0 + π/8]. (61)

Take c > 0 such that B(2c, yq) ⊂ Vq . Note that

f (yq + δeq) = f (yq) +
δ∫

0

D f (yq + seq)eq ds, δ ∈ [0, c].

onditions (61) imply that

P p
ϕ

(
f (yq + δeq) − f (yq)

) ∈
[
ϕ0 − π

8
,ϕ0 + π

8

]
, δ ∈ [0, c], (62)
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
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and the mapping Q p(δ) : [0, c] → R defined by Q p(δ) = P p
r f (yq + δeq) is a homeomorphism onto

its image. Similarly (reducing g , if necessary), one can show that if x ∈ B(g, yp), then the mapping
Q q,x(δ) : [0, g] → R defined by Q q,x(δ) = P q

r f −1(x + δep) is a homeomorphism onto its image.
Take δp, δq ∈ [0, c] and let x = δpep + f (yq + δqeq). Then rp(x) = Q p(δq) and rq(x) =

Q q, f (yq+δqeq)(δp). It follows that the mapping w is a homeomorphism onto its image. Indeed, if g1 > 0

is small enough, then the mapping w−1(ξ,η) = (x(ξ), Q −1
q,x(ξ)(η)), where x(ξ) = f (yq + Q −1

p (ξ)eq), is
uniquely defined and continuous for (ξ,η) ∈ [0, g1] × [0, g1].

We reduce m3 so that the following relations hold:

m3 < c, B(m3, yp) ∩ L+
p ⊂ U L, and B(m3, yq) ∩ L+

q ⊂ f −1U L .

Let us prove a statement which we use below.

Lemma 10. For any m1 > 0 there exist numbers r1, r2 ∈ (0,m1) and T1, T2 > 0 with the following property:
if γ (s) : [0,1] → L+

p is a curve such that

P p
r γ (0) = r1, P p

r γ (1) = r2, (63)

and

γ (s) ∈ L+
p ∩ B(m2, yp), s ∈ [0,1], (64)

then there exist numbers τ ∈ [T2, T1] and s ∈ [0,1] such that

φ
(
τ ,γ (s)

) ∈ B(m1, zp).

Proof. Let rp = P p
r zp and ϕp = P p

ϕ zp . For r > 0, denote

Tmin(r) = log rp − log r

ap + 4g
and Tmax(r) = log rp − log r

ap − 4g
.

Note that if r < rp , then Tmax(r) > Tmin(r) and that Tmin(r) → ∞ as r → 0. Take T > 0 such that if
τ > T , x ∈ B(m2, yp), and

φ(t, x) ⊂ U p, t ∈ [0, τ ],

then

dist
(
W u

loc(p,m),φ(τ , x)
)
<

m1

2K
. (65)

Take r1, r2 ∈ (0,min(m2, rp)) such that

r2 > r1, Tmin(r2) > T ,

and

(bp − 4g)Tmin(r1) − (bp + 4g)Tmax(r2) > 4π. (66)
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
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et T1 = Tmax(r1) and T2 = Tmin(r2). Since the function γ (s) is continuous, inclusions (58) and in-
qualities (49) imply that there exists a uniquely defined continuous function τ (s) : [0,1] → R such
hat

P p
r φ

(
τ (s), γ (s)

) = rp .

It follows from inclusions (58) and equalities (63) that

τ (0) ∈ [
Tmin(r1), Tmax(r1)

]
, τ (1) ∈ [

Tmin(r2), Tmax(r2)
]
, τ (s) ∈ [T2, T1].

ow we apply relations (49), (58), and (62) to show that

P p
ϕφ

(
τ (0), γ (0)

)
� (bp − 4g)Tmin(r1) + ϕ0 − π/8

nd

P p
ϕφ

(
τ (1), γ (1)

)
� (bp + 4g)Tmax(r2) + ϕ0 + π/8.

ince the function τ (s) is continuous, the above inequalities and inequalities (66) imply the existence
f s ∈ [0,1] such that

P p
ϕφ

(
τ (s), γ (s)

) = ϕp mod 2π.

ence, P p
34φ(τ (s), γ (s)) = P p

34zp . It follows from this equality combined with relations (57), (65), and
he inequality τ (s) > T that φ(τ (s), γ (s)) ∈ B(m1/2, zp), which proves Lemma 10. �

Let r1, r2 ∈ (0,m2) and T1, T2 > 0 be the numbers given by Lemma 10. Consider the set

Ap = {
φ(t, x): t ∈ [−T1,−T2], x ∈ Cl B(m2/2, zp)

} ∩ L+
p .

ote that A p is a closed set that intersects any curve γ (s) satisfying conditions (63) and (64).
We apply a similar reasoning in the neighborhood Uq to the vector field −X to show that there

xist numbers r′
1, r′

2 ∈ (0,m2) and T ′
1, T ′

2 > 0 such that the set

Aq = {
φ(t, x): t ∈ [

T ′
2, T ′

1

]
, x ∈ Cl B(m2/2, zq)

} ∩ L+
q

closed and intersects any curve γ (s) : [0,1] → L+
q ∩ B(m2, yq) such that

P q
r γ (0) = r′

1 and P q
r γ (1) = r′

2.

We claim that

Ap ∩ f (Aq) �= ∅, (67)

hich proves Lemma 6.
Consider the set K ⊂ L+

p ∩ f (L+
q ) bounded by the curves k1 = L+

p ∩ {P p
r x = r1}, k2 = L+

p ∩{P p
r x = r2},

′
1 = f (L+

q ∩ {P q
r y = r′

1}), and k′
2 = f (L+

q ∩ {P q
r y = r′

2}). Since w(x) is a homeomorphism, the set K is
omeomorphic to the square [0,1] × [0,1].

The following statement was proved in [18].
Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, J.
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Lemma 11. Introduce in the square I = [0,1]× [0,1] coordinates (u, v). Assume that closed sets A, B ⊂ I are
such that any curve inside I that joins the segments u = 0 and u = 1 intersects the set A and any curve inside
I that joins the segments v = 0 and v = 1 intersects the set B. Then A ∩ B �= ∅.

The set A p is closed. By Lemma 10, A p intersects any curve in K that joins the sides k1 and k2
Similarly, the set Aq is closed and intersects any curve that belongs to f −1(K ) and joins the sides
f −1(k′

1) and f −1(k′
2). Thus, the set f (Aq) intersects any curve in K that joins the sides k′

1 and k′
2. By

Lemma 11 inequality (67) holds. Lemma 6 is proved.

Proof of Lemma 7. Similarly to the proof of Lemma 6, let us consider the subspaces L+
p and L+

q and a

number m2 ∈ (0,m1) and construct the set Aq ⊂ L+
q . Note that the set f −1(B(m1, yp) ∩ W s(p) ∩ L+

p )

contains a curve that satisfies conditions (63) and (64). Hence, B(m1, yp) ∩ W s(p) ∩ f (Aq) �= ∅. For
any point in this intersection, its trajectory is the desired shadowing trajectory. �
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Appendix A. Construction of the vector field X∗

Consider two 2-dimensional spheres M1 and M2. Let us introduce coordinates (r1,ϕ1) and (r2,ϕ2)

on M1 and M2, respectively, where r1, r2 ∈ [−1,1] and ϕ1,ϕ2 ∈ R/2πZ. We identify all points of the
form (−1, ·) as well as points of the form (1, ·). Denote

M+
1 = {

(r1,ϕ1), r1 � 0
}

and M−
1 = {

(r1,ϕ1), r1 � 0
}
.

Consider a smooth vector field X1 defined on M+
1 such that its trajectories (r1(t),ϕ1(t)) satisfy the

following conditions:

d

dt
r1 = 1,

d

dt
ϕ1 = 0, r1 = 0;

d

dt
r1 > 0, r1 > 0;

d

dt
r1 = 0, r1 = 1.

We also assume that, in proper local coordinates in a neighborhood of the “North Pole” (1, ·) of the
sphere M1, the vector field X1 is linear, and

DX1(1, ·) =
(−2 0

0 −1

)
.

Thus, (1, ·) is an attracting hyperbolic rest point of X1, and every trajectory of X1 in M+
1 tends to

(1, ·) as time grows.
Consider a smooth vector field X2 on M2 such that its nonwandering set Ω(X2) consists of two

rest points: a hyperbolic attractor s2 = (0,π) and a hyperbolic repeller u2 = (0,0). Assume that, in
proper coordinates, the vector field X2 is linear in neighborhoods of s2 and u2, and

DX2(s2) = −DX2(u2) =
(−1 1

−1 −1

)
.
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Consider the vector field X+ defined on M+
1 × M2 by the following formula

X+(r1,ϕ1, r2,ϕ2) = (
X1(r1,ϕ1), r2

1 X2(r2,ϕ2)
)
.

Consider infinitely differentiable functions g1 : M+
1 → R, g2, g3 : [−1,1] → [−1,1], and g4 : M+

1 →
0,1] satisfying the following conditions:

g1(0,0) = 0; g1(r1,ϕ1) ∈ (0,2π), (r1,ϕ1) �= 0,

g′
2(r2) ∈ (0,2), r2 ∈ [−1,1];

g2(0) < 0, g2(−1) = −1, g2(1) = 1;
g3(r2) = 2r2 − g2(r2), r2 ∈ [−1,1];

g4(0,0) = 1/2,
∂

∂ϕ1
g4(0,0) �= 0.

ote that the functions g2 and g3 are monotonically increasing.
Consider a mapping f ∗ : M+

1 × M2 → M−
1 × M2 defined by the following formula:

f ∗(r1,ϕ1, r2,ϕ2) = (−r1,ϕ1, g4(r1,ϕ1)g2(r2) + (
1 − g4(r1,ϕ1)

)
g3(r2),ϕ2 + g1(r1,ϕ1)

)
.

learly, f ∗ is surjective; the monotonicity of g2 and g3 implies that f ∗ is a diffeomorphism.
Using the standard technique with a “bump” function, one can construct a diffeomorphism

: M+
1 × M2 → M−

1 × M2 such that, for small neighborhoods U1 ⊂ U2 of (1, ·, s2), the following holds:

f (x) = f ∗(x), x /∈ U2,

nd f is linear in U1.
Consider the set l = {r1 = 0, r2 = 0, ϕ2 = 0}. Simple calculations show that

f (l) ∩ l = {
(0,0,0,0)

}
, (68)

nd the tangent vectors to l and f (l) at (0,0,0,0) are parallel to the vectors (0,1,0,0) and
0,1, (g2(0) − g3(0)) ∂

∂ϕ1
g4(0,0), ·), respectively. Hence,

dim
(
T(0,0,0,0)l ⊕ T(0,0,0,0) f (l)

) = 2. (69)

Define a vector field X− on M−
1 × M2 by the formula
U
N

C
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X−(x) = −D f
(

f −1(x)
)

X+(
f −1(x)

)
and note that x(t) is a trajectory of X+ if and only if f (x(−t)) is a trajectory of X−).

Finally, we define the following vector field X∗ on M1 × M2:

X∗(x) =
{

X+(x), x ∈ M+
1 × M2,

X−(x), x ∈ M−
1 × M2.

Let us check that the vector field X∗ is well-defined on the set {r1 = 0}. Indeed, X+(0,ϕ1, r2,ϕ2) =
1,0,0,0) and (D f (0,ϕ1, r2,ϕ2))

−1(1,0,0,0) = (−1,0,0,0). It is easy to see that DX+(0,ϕ1, r2,ϕ2) =
X−(0,ϕ1, r2,ϕ2) = 0. This implies that X ∈ C1.
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Let us prove that the vector field X∗ satisfies conditions (F1)–(F3). Let (r1(t),ϕ1(t), r2(t),ϕ2(t)) be
a trajectory of X∗ . The following inequalities hold:

d

dt
r1 > 0, r1 �= ±1. (70)

This implies the inclusion Ω(X∗) ⊂ {r1 = ±1}. By the construction of X+ , Ω(X∗) ∩ {r1 = 1} =
{(1, ·, s2), (1, ·, u2)}. Similarly, Ω(X∗) ∩ {r1 = −1} = { f (1, ·, s2), f (1, ·, u2)}. Denote s∗ = (1, ·, s2), p∗ =
(1, ·, u2), q∗ = f (p), and u∗ = f (s). Clearly, s∗ , u∗ , p∗ , q∗ are hyperbolic rest points, s∗ is an attractor,
u∗ is a repeller, DX(p∗) = J∗

p , and DX(q∗) = J∗
q . In addition, in small neighborhoods of p∗ and q∗ , the

vector field X∗ is linear.
It is easy to see that

W s(p∗) ∩ {r1 = 1} = {p∗} and W s(p∗) ∩ {r1 = −1} = ∅.

Inequality (70) implies that any trajectory in W s(p∗) \ {p∗} intersects the set {r1 = 0} at a single
point. The definition of X+ implies that W s(p∗) ∩ {r1 = 0} = l. Similarly, any trajectory in W u(q∗) \
{q∗} intersects {r1 = 0} at a single point, and W u(q∗) ∩ {r1 = 0} = f (l). It follows from equality (68)
that W s(p∗) ∩ {r1 = 0} ∩ W u(q∗) is a single point, and hence W s(p∗) ∩ W u(q∗) consists of a single
trajectory.

Inequality (70) implies condition (32), and condition (69) implies (33).
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