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Abstract

 

—The structure of the 

 

C

 

1

 

-interiors of sets of vector fields with various forms of the shadowing
property is studied. The fundamental difference between the problem under consideration and its coun-
terpart for discrete dynamical systems generated by diffeomorphisms is the reparameterization of shad-
owing orbits. Depending on the type of reparameterization, Lipschitz and oriented shadowing properties
are distinguished. As is known, structurally stable vector fields have the Lipschitz shadowing property.
Let 

 

X

 

 be a vector field, and let 

 

p

 

 and 

 

q

 

 be its points of rest or closed orbits. Suppose that the stable man-
ifold of 

 

p

 

 and the unstable manifold of 

 

q

 

 have a nontransversal intersection point. It is shown that, in this
case, the vector field 

 

X

 

 does not have the Lipschitz shadowing property. If one of the orbits 

 

p

 

 and 

 

q

 

 is
closed, then 

 

X

 

 does not have the oriented shadowing property. These assertions imply that the 

 

C

 

1

 

-interior
of the set of vector fields with the Lipschitz shadowing property coincides with the set of structurally
stable vector fields. If the dimension of the manifold under consideration is at most 3, then a similar
result is valid for the oriented shadowing property. We study the structure of the 

 

C

 

1

 

-interiors of sets of
vector fields with various forms of the shadowing property. It is shown that, in the case of the Lipschitz
shadowing property, it coincides with the set of structurally stable systems. For manifolds of dimension
at most 3, a similar result is valid for the oriented shadowing property.
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1. INTRODUCTION

The problem of shadowing pseudo-orbits is related to the following question: Under what conditions is
any pseudo-orbit of a dynamical system close to a orbit? The study of this question was initiated by Anosov
[1] and Bowen [2]. The current state-of-the-art in shadowing theory is reviewed in monographs [3, 4]. 

The fundamental difference between the shadowing problem for flows and that for discrete dynamical
systems generated by diffeomorphisms consists in the reparameterization of shadowing orbits.

The purpose of this paper is to describe the structure of the 

 

C

 

1

 

-interiors of sets of vector fields with cer-
tain pseudo-orbit shadowing properties.

2. BASIC NOTATION AND MAIN RESULTS

Let 

 

M

 

 be a smooth closed (i.e., compact without boundary) 

 

n

 

-manifold with Riemannian metric dist. By

 

�

 

(

 

M

 

) we denote the space of smooth vector fields on 

 

M

 

 with the 

 

C

 

1

 

-topology. For a vector field 

 

X

 

 

 

∈

 

 

 

�

 

(

 

M

 

),

 

φ

 

(

 

t

 

, 

 

x

 

) denotes an orbit of 

 

X

 

 for which 

 

φ

 

(0, 

 

x

 

) = 

 

x

 

. 

 

Definition 1.

 

 Let 

 

d

 

 > 0. We define a 

 

d

 

-

 

pseudo-orbit

 

 of the field 

 

X

 

 as a mapping 

 

g

 

: 

 

R

 

  

 

M

 

 such that
dist(

 

g

 

(

 

t

 

 + 

 

τ

 

), 

 

φ

 

(

 

t

 

, 

 

g

 

(

 

τ

 

))) < 

 

d

 

 for 

 

|

 

t

 

|

 

 < 1 and 

 

τ

 

 

 

∈

 

 

 

R

 

. 
Let us introduce the notion of shadowing for flows. The key role in shadowing for flows is played by

reparameterizations.

 

Definition 2.

 

 A 

 

reparameterization 

 

is an increasing homeomorphism 

 

h

 

: 

 

R

 

  

 

R

 

 for which 

 

h

 

(0) = 0. For

 

a

 

 > 0, Rep(

 

a

 

) denotes the set of reparameterization satisfying the inequality

 

Definition 3.

 

 We say that a flow 

 

φ

 

 has the 

 

oriented shadowing property

 

 if, for any 

 

ε

 

 > 0, there exists a

 

d

 

 > 0 such that, for any 

 

d

 

-pseudo-orbit 

 

g

 

, we can find a point 

 

p

 

 and a reparameterization 

 

h

 

 satisfying the
condition 

h t1( ) h t2( )–
t1 t2–

------------------------------ 1– a for t1 t2, R, t1 t2.≠∈≤

dist φ h t( ) p,( ) g t( ),( ) ε, t R.∈<
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Definition 4.

 

 We say that a flow 

 

φ

 

 has the 

 

Lipschitz shadowing property

 

 if there exist 

 

L

 

0

 

, 

 

D

 

0

 

 > 0 such
that, for any 

 

d

 

 < 

 

D

 

0

 

 and any 

 

d

 

-pseudo-orbit 

 

g

 

, we can find a point 

 

p and a reparameterization h ∈ Rep(L0d)
satisfying the condition

We denote the sets of vector fields with the oriented and Lipschitz shadowing properties by OrSh and
LipSh, respectively. By S we denote the set of structurally stable vector fields, T denotes the set of vector
fields whose all points of rest and closed orbits are hyperbolic, and KS is the set of Kupka–Smale fields [5].
Clearly, LipSh ⊂ OrSh. 

For any set A ⊂ �(M), let Int1(A) denote the C1-interior of A. For a vector field X, Per(X) is the set of rest
points and closed orbits of X. For any hyperbolic orbit p ∈ Per(X), Ws(p) and Wu(p) denote its stable and
unstable manifolds, respectively. 

It was shown in [6] that S ⊂ LipSh. Since the set S is C1-open, it follows that S ⊂ Int1(LipSh). The main
results of this paper are as follows.

Theorem 1. S = Int1(LipSh). 
Theorem 2. If dimM ≤ 3, then S = Int1(OrSh). 

3. PROOF OF THEOREM 1

A modification of the argument used in [7] in the case of diffeomorphisms easily proves the following
assertion. 

Lemma 1. Int1(OrSh) ⊂ T.
Gan proved in [8] that Int1(KS) = S. Thus, Theorem 1 is implied by the following assertion. 
Lemma 2. Suppose that X ∈ Int1(LipSh) and p, q ∈ Per(X). If r ∈ Wu(q) ∩ Ws(p), then r is a transversal

intersection point of Wu(q) and Ws(p). 
Proof. We give a proof of this lemma for the most difficult case, in which p and q are points of rest. In

the other cases, a similar assertion for the oriented shadowing property can be proved by using methods
from [7, 9].

Lemma 3. Suppose that X ∈ Int1(OrSh), γ1 is a closed orbit of X, γ2 ∈ Per(X), and r0 ∈ Ws(γ1) ∩ Wu(γ2).
Then, r0 is a transversal intersection point of Ws(γ1) and Wu(γ2). 

We need two elementary technical lemmas, which we state without proof. Consider a flow ϕ(t, x) in the
plane R2 generated by a linear autonomous system of the form

For a point x ∈ R2\{0}, we denote the point x/|x | ∈ S1 by arg(x).
Lemma 4. For any ε, L > 0, there exist positive numbers T = T(ε, L) and d0 = d0(ε, L) such that if 

(1)

then |arg(x1) – arg(x0)| < ε. A one-dimensional (and simpler) analogue of Lemma 4 is the following assertion,
which refers to the differential equation  = ax on the line and its flow ϕ(t, x) = xeat.

Lemma 5. For any ε, L > 0, there exist positive numbers T = T(ε, L) and d0 = d0(ε, L) such that if 

and inequality (1) holds, then 

We proceed to prove Lemma 2. Suppose that, on the contrary, r is a point of nontransversal intersection
of Wu(q) and Ws(p). It was shown in [7] and [9] that any C1-neighborhood of the field X contains a field X '

dist φ h t( ) p,( ) g t( ),( ) L0d , t R.∈<

ẋ a b–

b a⎝ ⎠
⎜ ⎟
⎛ ⎞

x, x R2, where a 0 and b 0.≠>∈=

d d0, x0 x1, R2, x0 d , h t( ) Rep Ld( ),∈≥∈<
ϕ t x0,( ) ϕ h t( ) x1,( )– Ld at t 0 T,[ ],∈<

ẋ

d d0, x0 x1, R, x0 d , h t( ) Rep Ld( ),∈>∈<

x1 x0–
x0

------------------ ε.<
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such that p and q are hyperbolic rest points of X ', r is a nontransversal intersection point of Wu(q) and Ws(p),
and the field X ' is linear in some neighborhoods Np and Nq of the points p and q, respectively. Since X ∈
Int1(LipSh), it follows that X' can be chosen to belong to Int1(LipSh) as well. To further simplify the expo-
sition, we denote X' as X and the flow generated by X' as ϕ. In what follows, in the course of the proof, we
perturb the field X in a similar way several times, so that the perturbed field remains in Int1(LipSh), and
denote the new field by X and the flow by φ.

Let us identify the neighborhoods Np and Nq with the space Rn. In Np and Nq, we introduce local coordi-
nates (y, z) and (ξ, η) so that p and q are the origins in Np and Nq, respectively, and the Jacobian matrices in
these coordinates (possibly, for a perturbed field X) have the form DX(p) = diag(Ap, Bp), where Re(λj) < 0
for the eigenvalues of Ap, Re(λj) > 0 for the eigenvalues of Bp, and Bp = diag(λ1, …, , D1, …, ), where

λ1, …,  ∈ R and the Dj are 2 × 2 matrices of the form

Similarly, DX(q) = diag(Aq, Bq), where Re(λj) > 0 for the eigenvalues Aq, Re(λj) < 0 for the eigenvalues

of Bq, and Bq = diag(µ1, …, , , …, ), where µ1, …,  ∈ R and the  are 2 × 2 matrices of the
form

Thus, in the neighborhoods Np and Nq (in what follows, we assume that the whole consideration is per-
formed on the union of Np and Nq and a small neighborhood of the orbit of r), we have 

Let us introduce the notations Sp = Ws(p), Up = Wu(p), Sq = Ws(q), and Uq = Wu(q). Suppose that Sq =

 ⊕ … ⊕ , where l = s1 + s2 and , …,  are one- or two-dimensional subspaces invariants with

respect to DX(q). Similarly, Up =  ⊕ … ⊕ , where m = u1 + u2 and , …,  are one- or two-
dimensional subspaces invariant with respect to DX(p).

For j = 1, …, l, let  denote the projectors onto  parallel to Uq ⊕  ⊕ … ⊕  ⊕  ⊕

… ⊕ . We have

Let Πq denote the projector onto Sq parallel to Uq; then, Πq =  + … + .

Let , …,  be the projectors onto , …, , respectively. Then, 

By Πp we denote the projector onto Up parallel to Sp; we have Πp =  + … .

On the orbit φ(t, r), choose points ap ∈ Np and aq ∈ Nq so that φ(t, ap) ∈ Np and φ(–t, aq) ∈ Nq for any t > 0.
For some τ > 0, we have ap = φ(τ, aq). We set vp = X(ap) and vq = X(aq). Clearly, vp ∈ Sp and vq ∈ Uq. 

Let  be the hyperplane in Sp orthogonal to vp, and let Σp be the affine (n – 1)-dimensional subspace

defined by Σp = ap +  + Up. Similarly,  is the hyperplane in Uq orthogonal to vq and Σq is the affine (n –

1)-dimensional subspace defined by Σq = aq +  + Sq. Clearly, Σp and Σq have no contact with the field X in
small neighborhoods of the points ap and aq. Let K: Σq  Σp denote the corresponding Poincaré mapping. 

λu1
Du2

λu1

D j
a j b j–

b j a j⎝ ⎠
⎜ ⎟
⎛ ⎞

, where a j 0 and b j 0, j 1 … u2, ,{ }.∈≠>=

µs1
D̃1 D̃s2

µs1
D̃ j

D̃ j
ã j b̃ j–

b̃ j ã j⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

, where ã j and b̃ j 0, j 1 … s2, ,{ }.∈≠<=

Ws p( ) z 0={ }, Wu p( ) y 0={ }, Ws q( ) η 0={ }, Wu q( ) ξ 0={ }.= = = =

Sq
1( ) Sq

l( ) Sq
1( ) Sq

l( )

U p
1( ) U p

m( ) U p
1( ) U p

m( )

Πq
j( ) Sq

j( ) Sq
1( ) Sq

j 1–( ) Sq
j 1+( )

Sq
l( )

Πq
j( )Sq

j( ) Sq
j( ) and Πq

j( )Πq
k( ) 0, where j k, 1 … l, j, , k.≠= = =

Πq
1( ) Πq

l( )

Πp
1( ) Πp

m( ) U p
1( ) U p

m( )

Πp
i( )U p

i( ) U p
i( ) and Πp

i( )Πp
k( ) 0, where i k, 1 … m, i k.≠, ,= = =

Πp
1( ) Πp

m( )

Σ̃p

Σ̃p Σ̃q

Σ̃q
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Perturbing the field X and choosing appropriate coordinates near the piece φ([o, τ], aq) of the orbit, we
can achieve 

• the fulfillment of the equality K(x) = φ(τ, x) for x ∈ Σq close to aq; 

• the linearity of the mapping K (under the natural identification of Σq with  ⊕ Sq and Σp with  ⊕ Up).
Clearly, in this case, we have 

(2)

The nontransversality of the intersection of Wu(q) and Ws(p) at the point ap means that Wu(q) +

Ws(p) ≠ Rn. By virtue of relations (2), this means that vp +  + K  ≠ Rn. Applying the equality vp +

 = Sp, we obtain 

(3)

It follows from (3) that, for some i ∈ {1, …, m}, we have K  ≠ . Consider the most compli-

cated case, in which dim  = 2 and dim K  = 1. Let ep ∈  denote the unit vector perpendicular

to K , and let  denote the projector onto the straight line passing through the vector ep parallel to

K . By the choice of ep, we have 

(4)

Any vector x ∈ Σq can be represented as x = Πqx + y, where y ∈ . It follows that Kx = K(Πqx +

y) = Ky. Equality (4) implies 

(5)

Since Σp = KΣq = K(  + Sq), we have 

(6)

In what follows, we refer only to relations (5) and (6); the other cases differ only in the choice of the
vector ep.

We identify the straight line passing through ep with the real line and assume that ep = 1. Choose a
unit vector eq ∈ Sq so that, for all j ∈ {1, …, l}, 

(i)  = 0 if  = {0};

(ii) eq < 0 if  ≠ {0}; moreover, if dim  = 2, then we choose eq so that eq ⊥

Ker . 

Relation (6) implies the existence of eq ≠ 0. For each d > 0, consider the pseudo-orbit g(t) defined by 

Clearly, there exists a constant C1 ≥ 1 depending only on the flow φ and not depending on the choice of
d, ep, and eq such that g(t) is a C1d-pseudo-orbit of the flow φ.

Suppose that the field X has the Lipschitz shadowing property with constants L0 and D0. Suppose also
that, in accordance with the assumption made above, the pseudo-orbit g(t) is shadowed by the orbit of the
point wq with a reparameterization h(t) ∈ Rep(L0C1d) for D0/C1 > d > 0. We have 

Σ̃q Σ̃p

Tap
Wu q( ) K Σ̃q v p and Tap

Ws p( )+ Σ̃p v p.+= =

Tap

Tap
Σ̃p Σ̃q

Σ̃p

ΠpK Σ̃q U p.≠

Πp
i( ) Σ̃q U p

i( )

U p
i( ) Πp

i( ) Σ̃q U p
i( )

Πp
i( ) Σ̃q Πp

ep

Πp
i( ) Σ̃q

Πp
epK Σ̃q 0{ }.=

Σ̃q Πp
ep Πp

ep

Πp
ep

Πp
epKx Πp

epKΠqx for x Σq.∈=

Σ̃q

Πp
epKSq 0{ }.≠

Πp
ep

Πq
j( ) Πp

epKSq
j( )

Πp
epKΠq

j( ) Πp
epKSq

j( ) Sq
j( ) Πq

j( )

Πp
epKΠq

j( )

g t( )

φ t aq deq+,( )   if   t 0,<
φ t aq,( )   if   0 t τ,<≤
φ t ap dep+,( )   if   t τ.≥⎩

⎪
⎨
⎪
⎧

=



364

VESTNIK ST. PETERSBURG UNIVERSITY. MATHEMATICS     Vol. 41      No. 4      2008

TIKHOMIROV

(7)

Clearly, the orbit of ωq intersects Σq. We denote the intersection point by . Inequality (7) implies the

existence of a constant C2 not depending on d such that  = φ(H, ωq) for some |H | < C2d. The orbit of the

point  shadows the pseudo-orbit g(t) with a reparameterization of class Rep(L'C1d), where L' = (L0C1 +

C2)/C1. For simplicity, we denote  by ωq and L' by L0. Consider wp ∈ Σp defined by wp = Kwq = φ(τ, wq).
The inclusion g(τ) ∈ Σp and inequality (7) with t = τ imply dist(φ(h(τ), wq), Σp) ≤ L0C1d. Clearly, in this case,
there exists a constant C3 not depending on d such that wp = φ(h(τ) + H, wq) for some |H | < C3d.

Let (t, x) = φ(t, x) be the projection of the flow φ on the subspace . Clearly,  is determined

by a linear vector field, until the orbit leaves the neighborhood Nq. Similarly, we set φp(t, x) = (t, x).

Take ε = π/4 and L = C1L0 + 1. We apply Lemmas 4 and 5 to these numbers and the flows φp(t, x) and

(–t, x) for j ∈ {1, …, l}. Let T = T(ε, L) and d0 = d0(ε, L) be numbers such that the assertions of Lemmas
4 and 5 with these T and d0 hold for all systems under consideration.

Choose d1 ∈ R so that d0 > d1 > 0 and, for any d ≤ d1, inequality (7) holds and, moreover, 

and 

where B(a, x) is the ball of radius a centered at x. This, together with (7), implies the inclusions 

for 0 ≤ t ≤ T. Thus, the pieces of the orbit and the pseudo-orbit of interest to us are contained in Np and Nq.
Inequalities (7) and the definition of g(t) imply 

Let us show that  and  are of the same sign. Consider the more complicated

case of dim  = 2. Let us apply Lemma 4 to the flow (–t, x) with  = (deq) and  = ωq.

We see that |arg( ) – arg( )| < ε = π/4. It follows from the choice of eq that eq and ωq belong to the same

half-plane with respect to Ker . This implies that  and  are of the same
sign, i.e., 

(8)

A similar argument proves that  and  are of the same sign, i.e.,  > 0. Summing ine-

qualities (8) over all j ∈ {1, …, l}, we obtain  < 0. It follows from (5) that  < 0; however,

 =  > 0. This contradiction proves Lemma 2 and Theorem 1.

4. PROOF OF THEOREM 2

To prove Theorem 2, we need two additional lemmas. 
Lemma 6. Suppose that p and q are hyperbolic rest points of the vector field X and p is not a sink. Let r

= Wu(q) ∩ Ws(p). Suppose that, in some neighborhood V of the point r, 

(9)

Then, X ∉ Int1(OrSh).

dist φ h t( ) wq,( ) g t( ),( ) L0C1d , t R.∈≤

ωq'

ωq'

ωq'

ωq'

φq
j( ) Πq

j( ) Πq
j( ) Sq

j( ) φq
j( )

Πp
i( )φ Πp

i( )

φq
j( )

B L0C1d φ t aq deq+,( ),( ) Nq for 0 t 2T–≥ ≥⊂

B L0C1d φ t ap, dep+( ),( ) N p for 0 t 2T ,≤ ≤⊂

φ h t–( ) ωq,( ) Nq and φ h τ t+( ) h τ( )– ωp,( ) N p∈ ∈

φq
j( ) h t( ) wq,( ) φq

j( ) t aq deq+,( )– L0C1d for T– t 0, j≤ ≤ ≤ 1 … l, ,{ }.∈

Πp
epKΠq

j( )deq Πp
epKΩq

j( )ωq

Sq
j( ) φq

j( ) x0
j( ) Πq

j( ) x1
j( ) Πq

j( )

x1
j( ) x0

j( )

Πp
epKΠq

j( ) Πp
epKΠq

j( )eq Πp
epKΠq

j( )ωq

Πp
epKΠq

j( )ωq 0.<

Πp
epωp Πp

epdep Πp
epωp

Πp
epKΠqωq Πp

epKωq

Πp
epKωq Πp

epωp

Wu q( ) V∩ Ws p( ) V .∩⊂
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Proof. Without loss of generality, we can assume that r ∈ (p) (where (p) and (p) are,
respectively, the locally stable and the locally unstable manifold of the point p). Consider any point α ∈

(p). Choose ε > 0 so that 

(i) dist(a, (p)) > ε and B(ε, r) ⊂ V; 

(ii) the orbit of any point x ∉ Wu(q) as time tends to –∞ leaves the ε-neighborhood of q.
For any τ0, τ1 > 0 consider the pseudo-orbit g(t) defined by 

Since φ(t, r)  p as t  ∞ and φ(t, α)  p as t  –∞, it follows that, for any d > 0, there exist τ0
and τ1 for which g(t) is a d-pseudo-orbit. Let us show that, for any reparameterization h(t) and any point x
∈ M, there exists a t ∈ R for which dist(g(t), φ(h(t), x)) > ε. Suppose that, on the contrary, 

(10)

Since g(t)  q as t  –∞, it follows from inequality (10) that x ∈ Wu(q). Substituting t = 0 into (10),

we obtain dist(r, φ(h(0), x)) ≤ ε. This inequality and relation (9) imply φ(h(0), x) ∈ (p); hence, φ(h(t),

x) ∈ (p) for any t > 0. Therefore, by the choice of α, inequality (10) does not hold for t = τ0 + τ1. This
implies X ∉ Int1(OrSh).

Lemma 7. Suppose that p and q are hyperbolic rest points of a vector field X ∈ Int1(OrSh) and dimWu(p)
= 1. Let r ∈ Wu(q) ∩ Ws(p). Then, r is a transversal intersection point of Wu(q) and Ws(p). 

Proof. Suppose that r is a nontransversal intersection point of Wu(q) and Ws(p). As in the proof of Lemma 2,
we can assume that 

(i) the field X is linear in some neighborhood U of the point p and, moreover, r ∈ U; 
(ii) in some neighborhood V of the point r, the manifold Wu(q) has the form r + K, where K is a linear

subspace. 
Since Wu(q) and Ws(p) are affine spaces in the neighborhood V with dimWs(p) = dimM – 1, it follows

from the nontransversality of the intersection of Wu(q) and Ws(p) that Wu(q) ∩ V ⊂ Ws(p) ∩ V. This relation
and Lemma 6 imply X ∉ Int1(OrSh). 

Proof of Theorem 2. Consider a manifold M of dimension dimM ≤ 3. As in the proof of Theorem 1, it
suffices to prove that if X ∈ Int1(OrSh), p, q ∈ Per(X), and r ∈ Wu(q) ∩ Ws(p), then r is a transversal inter-
section point of Ws(p) and Wu(q). If p or q is a closed orbit, then the required assertion follows from Lemma 3.
Thus, we can assume that p and q are rest points. Suppose that dimM = 3 (in the cases dimM = 2 and dimM
= 1, the proof is similar). The following cases are possible. 

(i) At least one of the manifolds Ws(p) and Wu(q) has dimension 3. Then their intersection is transversal. 
(ii) At least one of the manifolds Ws(p) and Wu(q) has dimension 2. Without loss of generality, we can

assume that dimWs(p) = 2. Then, by Lemma 7, the intersection of Ws(p) and Wu(q) is transversal.
(iii) Both manifolds Ws(p) and Wu(q) have dimension 1. In this case, each of these manifolds is the orbit

of some point, and therefore Ws(p) = Wu(q). Lemma 6 implies X ∉ Int1(OrSh). This completes the proof of
Theorem 2.

5. CONCLUSION
In this paper, the structure of the C1-interiors of sets of vector fields with the Lipschitz and oriented shad-

owing properties is described.
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