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1. Introduction

The theory of shadowing of approximate trajectories (pseudotrajectories) in dynamical systems
is now well developed (see, for example, the monographs [1,2]). At the same time, the problem of
complete description of systems having the shadowing property seems unsolvable. We have no hope
to characterize systems with the shadowing property in terms of the theory of structural stability
(such as hyperbolicity and transversality) since the shadowing property is preserved under homeo-
morphisms of the phase space (at least in the compact case), while the above-mentioned properties
are not.

The situation changes completely when we pass from the set of smooth dynamical systems having
the shadowing property (or some of its analogs) to its C!-interior. It was shown by Sakai [3] that
the C'-interior of the set of difffomorphisms with the shadowing property coincides with the set of
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structurally stable diffeomorphisms. Later, a similar result was obtained for the set of diffeomorphisms
with the orbital shadowing property [4].

In this context, there is a real difference between the cases of discrete dynamical systems gen-
erated by diffeomorphisms and systems with continuous time (flows) generated by smooth vector
fields. This difference is due to the necessity of reparametrizing shadowing trajectories in the latter
case. One of the main goals of the present paper is to show that this difference is crucial, and the
results for flows are essentially different from those for diffeomorphisms.

Let us pass to the main definitions and results. Let M be a smooth closed (i.e., compact and
boundaryless) manifold with Riemannian metric dist and let n = dim M. Consider a smooth (C!) vector
field on X and denote by ¢ the flow of X. We denote by

0(x,¢)={o(t.x): t e R}

the trajectory of a point x in the flow ¢; 0% (x, ¢) and O~ (x, ¢) are the positive and negative semi-
trajectories, respectively.

Fix a number d > 0. We say that a mapping g:R — M (not necessarily continuous) is a d-
pseudotrajectory (both for the field X and flow ¢) if

dist(g(z + 1), ¢(t,g(1))) <d fort R, t [0, 1]. (1)

A reparametrization is an increasing homeomorphism h of the line R; we denote by Rep the set
of all reparametrizations.
For a > 0, we denote

h() — h(s) _

Rep(a) = {heRep: ’ -

1‘ <a, t,seR, t;és].

In this paper, we consider the following three shadowing properties (and the corresponding sets
of dynamical systems).

We say that a vector field X has the standard shadowing property (X € StSh) if for any € > 0
we can find d > 0 such that for any d-pseudotrajectory g(t) of X there gxist a point p € M and a
reparametrization h € Rep(¢) such that

dist(g(t), ¢(h(t), p)) <& forteR. (2)

We say that a vector field X has the oriented shadowing property (X € OrientSh) if for any
& >0 we can find d > 0 such that for any d-pseudotrajectory of X there gxist a point p € M
and a reparametrization h € Rep such that inequalities (2) hold (thus, it is not assumed that the
reparametrization h is close to identity).

Finally, we say that a vector field X has the orbital shadowing property (X € OrbitSh) if for any
& >0 we can find d > 0 such that for any d-pseudotrajectory of X there exists a point p € M such
that

disty (C1O(p, ¢), Cl{g(0): t eR}) <&,

where disty is the Hausdorff distance.

Let us note that the standard shadowing property is equivalent to the strong pseudo orbit tracing
property (POTP) in the sense of Komuro [5]; the oriented shadowing property was called the normal
POTP by Komuro [5] and the POTP for flows by Thomas [6].

We consider the following C' metric on the space of smooth vector fields: If X and Y are vector
fields of class C!, we set

=g [ o)
p1(X, —22\}}( X)—Yx)|+ ax—a(x) ,
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where |.| is the norm on the tangent space TyM generated by the Riemannian metric dist, and ||. ||
is the corresponding operator norm for matrices.

For a set A of vector fields, Int'(A) denotes the interior of A in the C! topology generated by the
metric p1.

Let us denote by S and N the sets of structurally stable and nonsingular vector fields, respectively.

The only result in the problem under study was recently published by Lee and Sakai [7]:
Int! (StSh NN) C S.

To formulate our main results, we need one more definition.

Let us say that a vector field X belongs to the class B if X has two hyperbolic rest points p and q
(not necessarily different) with the following properties:

(1) The Jacobi matrix DX(q) has two complex conjugate eigenvalues (1 = aj & iby of multiplicity
one with a; < 0 such that if A # p1 2 is an eigenvalue of DX(q) with Rex <0, then ReX <ay;

(2) the Jacobi matrix DX(p) has two complex conjugate eigenvalues vq 3 = ay +iby with a; > 0 of
multiplicity one such that if A £ vy 2 is an eigenvalue of DX (p) with ReX > 0, then ReA > ay;

(3) the stable manifold W*(p) and the unstable manifold W"(q) have a trajectory of nontransverse
intersection.

Condition (1) above means that the “weakest” contraction in W*(q) is due to the eigenvalues ft1 2
(condition (2) has a similar meaning).

Theorem 1. Int! (OrientSh \B) = S.

Let us note that Theorem 1 was stated (without a proof) in the author’s short note [8]. Let us
also note that if dim M < 3, then Int' (OrientSh) =S (which also was stated in [8] and proved by the
second author in [9]; in [9], it was also shown that if LipSh is the set of vector fields that have an
analog of the standard shadowing property with & replaced by Ld, then Int! (LipSh) =S).

Theorem 2. Int! (OrientSh) N B # ¢.
Theorem 3. Int! (OrbitSh NN) C S.

Let us note that Theorem 3 generalizes the above-mentioned result by Lee and Sakai.
The structure of the paper is as follows: In Section 2, we prove Theorem 1 and discuss the proof
of Theorem 3; in Section 3, we prove Theorem 2.

2. Proof of Theorem 1

First we introduce some notation.

We denote by B(a, A) the a-neighborhood of a set A C M.

The term “transverse section” will mean a smooth open disk in M of codimension 1 that is trans-
verse to the flow ¢ at any of its points.

Let Per(X) denote the set of rest points and closed orbits of a vector field X.

Let us recall that X is called a Kupka-Smale field (X € KS) if

(KS1) any trajectory in Per(X) is hyperbolic;
(KS2) stable and unstable manifolds of trajectories from Per(X) are transverse.

The proof of Theorem 1 is based on the following result (see [10]): Int! (KS) =S.
Let 7 denote the set of vector fields X that have property (KS1). Our first lemma is applied in the
proofs of both Theorems 1 and 3; for this purpose, we formulate and prove it for the set OrbitSh.
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Lemma 1.
Int! (OrbitSh) c 7. (3)

Proof. To get a contradiction, let us assume that there exists a vector field X € Int! (OrbitSh) that does
not have property (KS1), i.e., the set Per(X) contains a trajectory p that is not hyperbolic.

Let us first consider the case where p is a rest point. Identify M with R" in a neighborhood of p.
Applying an arbitrarily C!-small perturbation of the field X, we can find a field Y € Int! (OrbitSh) that
is linear in a neighborhood U of p (we also assume that p is the origin of U).

(Here and below in the proof of Lemma 1, all the perturbations are C'-small perturbations that
leave the field in Int! (OrbitSh); we denote the perturbed fields by the same symbol X and their flows
by ¢.)

Then trajectories of X in U are governed by a differential equation

X = Px, (4)

where the matrix P has an eigenvalue A with Rex =0.
Consider first the case where A = 0. We perturb the field X (and change coordinates, if necessary)
so that, in Eq. (4), the matrix P is block-diagonal,

P = diag(0, P1), (5)

and Pq is an (n — 1) x (n — 1) matrix.
Represent coordinate x in U as x = (y, z) with respect to (5); then

#(t, (¥.2)) = (v, exp(P11)2)

in U.

Take € > 0 such that B(4€, p) C U. To get a contradiction, assume that X € OrbitSh; let d corre-
spond to the chosen €.

Fix a natural number m and consider the following mapping from R into U:

y=-2¢, z=0; t<0,
git)y= {y:—Ze-l—t/m, z=0; O0<t<4me,
y=2¢, z=0; 4me<t.
Since the mapping g is continuous, piecewise differentiable, and either y =0 or y =1/m, g is a
d-pseudotrajectory for large m.
Any trajectory of X in U belongs to a plane y = const; hence,

disty (C(0 (g, ). CI({g(®): t e R})) >2€

for any q. This completes the proof in the case considered.

Similar reasoning works if p is a rest point and the matrix P in (4) has a pair of eigenvalues +ib,
b #0.

Now we assume that p is a nonhyperbolic closed trajectory. In this case, we perturb the vector
field X in a neighborhood of the trajectory p using the perturbation technique developed by Pugh
and Robinson in [11]. Let us formulate their result (which will be used below several times).

Pugh-Robinson perturbation. Assume that ry is not a rest point of a vector field X. Let r = ¢ (7, 1), where
T > 0. Let X1 and X, be two small transverse sections such that r; € Xj,i =1, 2. Let o be the local Poincaré
transformation generated by these transverse sections.

Consider a point 1’ = ¢(t’, 1), where t’ € (0, T), and let U be an arbitrary open set containing r’.
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Fix an arbitrary C'-neighborhood F of the field X.
There exist positive numbers g9 and Ag with the following property: if o’ is a local diffeomorphism from
the Ag-neighborhood of r1 in Xy into X, such that

distc1(0,0”) < &g,

then there exists a vector field X’ € F such that

(1) X’ = X outside U;
(2) o' isthe local Poincaré transformation generated by the sections X1 and X and trajectories of the field X'.

Let w be the least positive period of the nonhyperbolic closed trajectory p. We fix a point 7 € p,
local coordinates in which 7 is the center, and a hyperplane X of codimension 1 transverse to the
vector F(rr). Let y be coordinate in X.

Let o be the local Poincaré transformation generated by the transverse section X'; denote
P = Do (0). Our assumption implies that the matrix P is not hyperbolic. In an arbitrarily small neigh-
borhood of the matrix P, we can find a matrix P’ such that P’ either has a real eigenvalue with unit
absolute value of multiplicity 1 or a pair of complex conjugate eigenvalues with unit absolute value
of multiplicity 1. In both cases, we can choose coordinates y = (v, w) in X in which

P’ = diag(Q. P1), (6)

where Q is a1 x 1 or 2 x 2 matrix such that |Q v| =|v| for any v.

Now we can apply the Pugh-Robinson perturbation (taking r{ = = and ¥; = ¥, = X) that
modifies X in a small neighborhood of the point ¢(w/2, ) and such that, for the perturbed vector
field X’, the local Poincaré transformation generated by the transverse section X is given by y + P’y.

Clearly, in this case, the trajectory of 7 in the field X’ is still closed (with some period ). As
was mentioned, we assume that X’ has the orbital shadowing property (and write X, ¢, @ instead of
X, ¢, ).

We introduce in a neighborhood of the point 7 coordinates x = (x’, y), where x’ is one-dimen-
sional (with axis parallel to X(sr)), and y has the above-mentioned property.

Of course, the new coordinates generate a new metric, but this new metric is equivalent to the
original one; thus, the corresponding shadowing property (or its absence) is preserved.

We need below one more technical statement.

LE (local estimate). There gxist a neighborhood W of the origin in X' and constants I, g > 0 with the fol-
lowing property: if z; € ¥ N W and |z — z1| < 8 < 8o, then we can represent z; as ¢ (t, z,) with z, € ¥
and

Izl

z,—z1| <. (7)

This statement is an immediate corollary of the theorem on local rectification of trajectories (see,
for example, [12]): In a neighborhood of a point that is not a rest point, the flow of a vector field of
class C! is diffeomorphic to the family of parallel lines along which points move with unit speed (and
it is enough to note that a diffeomorphic image of X' is a smooth submanifold transverse to lines of
the family).

We may assume that the neighborhood W in LE is so small that for y € X N W, the function «(y)
(the time of first return to X') is defined, and that the point ¢(a(v, w), (0, v, w)) has coordinates
(Qv,Pyw) in X.

Let us take a neighborhood U of the trajectory p such that if r € U, then the first point of inter-
section of the positive semitrajectory of r with X' belongs to W.
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Take a > 0 such that the 4a-neighborhood of the origin in X' is a subset of W. Fix

€ <min{ § a
< sy 1 |
0 4

where 8y and [ satisfy the LE. Let d correspond to this € (in the definition of the orbital shadowing

property).
Take yo = (v, 0) with |vg| =a. Fix a natural number N and set

o =a<<£Q’<v0,O>), ke[0,N—1),

Bo =0, Be=o01+ -+ o,
and

¢(t,(0,0,0)), t<0;
gt) =1 ¢t — B, (0, £ Q¥vo,0)), B <t <Pry1, ke[0,N—1);
¢t —Bn,(0,QNvo,0)), t>pn.

Note that for any point y = (v, 0) of intersection of the set {g(t): t € R} with X, the inequality
|v| < a holds. Hence, we can take a so small that

B(2a,Cl({g(t): teR})) C U.
Since

k 1
N<Qk+lv0 _ k%Qk-Flvo — % — 0’ N — 00,

g(t) is a d-pseudotrajectory for large N.
Assume that there exists a point g such that

disty (C1(0(q, ¢)). Cl({g(D): t € R})) <e.
In this case, 0(q, ¢) C U, and there exist points q1, g2 € 0(q, ¢) such that
lg11= g1 — (0,0,0)| <€
and
g2 — (0, Q"vo,0)| <.
By the choice of ¢, there exist points q7,q, € 0(q, ¢) N ¥ such that
di| <le <a/4 and |g,— QNvo| <le <a/4.

Let ¢} = (0,vq, wy) and g}, = (0, v, w2). Since these points belong to the same trajectory that is
contained in U, |v{| = |v3|. At the same time,

lvil <a/4, |va—QNvo| <a/4, and |QNvo|=aq,

and we get a contradiction which proves our lemma. 0O
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To complete the proof of Theorem 1, we show that any vector field
X e Int! (OrientSh \ B)

has property (KS2).

To get a contradiction, let us assume that there exist trajectories p, q € Per(X) for which the un-
stable manifold W¥(q) and the stable manifold WS(p) have a point r of nontransverse intersection.
We have to consider separately the following two cases.

Case (B1): p and q are rest points of the flow ¢.
Case (B2): either p or q is a closed trajectory.

Case (B1). Since X ¢ BB, we may assume (after an additional perturbation, if necessary) that the
eigenvalues A1, ..., A, with ReX; > 0 of the Jacobi matrix DX(p) have the following property:

ReAj>11>0, j=2,...,u

(where u is the dimension of W¥(p)). This property means that there exists a one-dimensional “di-
rection of weakest expansion” in W (p).

If this is not the case, then our assumption that X ¢ B implies that the eigenvalues w1, ..., s
with Re itj < 0 of the Jacobi matrix DX(q) have the following property:

Repj<pm1 <0, j=2,...,s

(where s is the dimension of W*(q)). If this condition holds, we reduce the problem to the previous
case by passing from the field X to the field —X (clearly, the fields X and —X have the oriented
shadowing property simultaneously).

Making a perturbation (in this part of the proof, we always assume that the perturbed field belongs
to the set OrientSh \ B), we may “linearize” the field X in a neighborhood U of the point p; thus,
trajectories of X in U are governed by a differential equation

X = Px,
where
P =diag(Ps, Py), Py =diag(x,P1), A>0, (8)
P1isa (u—1) x (u—1) matrix for which there exist constants K > 0 and p > A such that
lexp(=P16)|| < K~'exp(—ut), t>0, (9)

and ReA; < O for the eigenvalues A; of the matrix Ps.

Let us explain how to perform the above-mentioned perturbations preserving the nontransversality
of W"(q) and W*(p) at the point r (we note that a similar reasoning can be used in “replacement”
of a component of intersection of W!(q) with a transverse section X' by an affine space, see the text
preceding Lemma 2 below).

Consider points r* = ¢(t,r), where 7 > 0, and ' = ¢(t/,r), where t/ € (0, 7). Let ¥ and X* be
small transverse sections that contain the points r and r*. Take small neighborhoods V and U’ of p
and r’, respectively, so that the set V does not intersect the “tube” formed by pieces of trajectories
through points of U’ whose endpoints belong to X and X*. In this case, if we perturb the vector
field X in V and apply the Pugh-Robinson perturbation in U’, these perturbations are “independent.”

We perturb the vector field X in V obtaining vector fields X’ that are linear in small neighbor-
hoods V' C V and such that the values p; (X, X’) are arbitrarily small.
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Let ¥s and y,* be the components of intersection of the stable manifold W*(p) (for the field X)
with ¥ and X* that contain the points r and r*, respectively.

Since the stable manifold of a hyperbolic rest point depends (on its compact subsets) C!-smoothly
on C!-small perturbations, the stable manifolds W*(p) (for the perturbed fields X’) contain compo-
nents y, of intersection with X* that converge (in the C 1 metric) to Ve

Now we apply the Pugh-Robinson perturbation in U’ and find a field X’ in an arbitrary Ql—
neighborhood of X such that the local Poincaré transformation generated by the field X’ and sections
XY and X* takes y/ to ys (which means that the nontransversality at r is preserved).

We introduce in U coordinates x = (y; v, w) according to (8): y is coordinate in the s-dimensional
“stable” subspace (denoted E®); (v, w) are coordinates in the u-dimensional “unstable” subspace (de-
noted EY). The one-dimensional coordinate v corresponds to the eigenvalue A (and hence to the
one-dimensional “direction of weakest expansion” in EY).

In the neighborhood U,

o(t. (v, v.w)) = (exp(Pst)y: exp(At)v, exp(P1t)w),
and it follows from (9) that
lexp(P1t)w| > K exp(ut)|w|, t>0. (10)

Denote by EY the one-dimensional invariant subspace corresponding to A.

We naturally identify ESNU and E* NU with the intersections of U with the corresponding local
stable and unstable manifolds of p, respectively.

Let us construct a special transverse section for the flow ¢. We may assume that the point r
of nontransverse intersection of W¥(q) and W*(p) belongs to U. Take a hyperplane X’ in ES of
dimension s — 1 that is transverse to the vector X(r). Set ¥ = X’ + EY; clearly, X is transverse
to X(r).

By a perturbation of the field X outside U, we may get the following: in a neighborhood of r, the
component of intersection W¥(q) N X containing r (for the perturbed field) has the form of an affine
space r + L, where L is the tangent space, L = T,(W!(q) N X), of the intersection W¥(q) N X' at the
point r for the unperturbed field (compare, for example, with [7]).

Let X, be a small transverse disk in X containing the point r. Denote by y the component of
intersection of W!(q) N X\ containing r.

Lemma 2. There exists € > 0 such that if x € X\ and
dist(¢(t,x), 0~ (r,¢)) <€, <0, (11)
thenx e y.

Proof. To simplify presentation, let us assume that q is a rest point; the case of a closed trajectory is
considered using a similar reasoning.

By the Grobman-Hartman theorem, there exists €9 > 0 such that the flow of X in B(2gy,q) is
topologically conjugate to the flow of a linear vector field.

Denote by A the intersection of the local stable manifold of q, W
ball B(2¢&g, q).

Take a negative time T such that if s=¢(T,r), then

ivc(@, with the boundary of the
¢(t,s) € B(eo,q), t<0. (12)
Clearly, if g is small enough, then the compact sets A and

B={¢(t,r: T<t<0}
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are disjoint. There exists a positive number &1 < &g such that the ¢;-neighborhoods of the sets A and
B are disjoint as well.

Take & € (0, £1). There exists a neighborhood V of the point s with the following property: if
y € V\ Wg (g), then the first point of intersection of the negative semitrajectory of y with the
boundary of B(2¢&g,q) belongs to the e;-neighborhood of the set A (this statement is obvious for
a neighborhood of a saddle rest point of a linear vector field; by the Grobman-Hartman theorem, it
holds for X as well).

Clearly, there exists a small transverse disk X5 containing s and such that if y € XsN W}f)c(q). then
the first point of intersection of the positive semitrajectory of y with the disk X, belongs to y (in
addition, we assume that X belongs to the chosen neighborhood V).

There exists € € (0, &1 — &2) such that the flow of X generates a local Poincaré transformation
o:XNB(e, 1) —> Xs.

Let us show that this & has the desired property. It follows from our choice of ¥ and (11) with t =0
that if x ¢ y, then

yi=0x) € X\ W .(@);

in this case, there exists T < 0 such that the point z=¢(t, y) belongs to the intersection of B(&;, A)
with the boundary of B(2¢&g, q). By (12),

dist(z, ¢(t,s)) > €0, t<O0. (13)
At the same time,
dist(z, ¢(t.1)) > €1 — &2, T <t<O0. (14)
Inequalities (13) and (14) contradict condition (11). Our lemma is proved. O
Now let us formulate the property of nontransversality of WU(q) and W*(p) at the point r in
terms of the introduced objects.
Let IT" be the projection to E* parallel to E°.
The transversality of W¥(q) and W*(p) at r means that

TrWu(Q) + TrWS(P) =R"

Since X is a transverse section to the flow ¢ at r, the above equality is equivalent to the equality

L+E =R"
Thus, the nontransversality means that
L+ ES #£R",
which implies that
L' :=M"L#E". (15)

We claim that there exists a linear isomorphism | of X' for which the norm ||J —Id|| is arbitrarily
small and such that

MY JLNEY = {0}. (16)
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Let e be a unit vector of the line EY. If e ¢ L’, we have nothing to prove (take ] =1Id). Thus, we
assume that e € L'. Since L’ # EY, there exists a vector v € E¥ \ L.

Fix a natural number N and consider a unit vector vy that is parallel to Ne + v. Clearly, vy — e
as N — oo. There exists a sequence Ty of linear isomorphisms of E* such that Tyvy =e and

ITy —Id]] - 0, N — oo.
Note that Tﬁle is parallel to vy; hence, T,Qle does not belong to L', and
TnIT'L N EY = {0}. (17)
Define an isomorphism Jy of X by
INGY.2) = (y.Tn2)
and note that
lJy —1d]| -0, N — oco.
Let Ly = JnL. Equality (17) implies that
MLy N EY ={0}. (18)

Our claim is proved.
First we consider the case where dim E" > 2. Since dimL’ < dim E* by (15) and dim E¥ =1, our
reasoning above (combined with a Pugh-Robinson perturbation) shows that we may assume that

L' NE" ={0}. (19)

For this purpose, we take a small transverse section X’ containing the point r’ = ¢ (—1,r), denote by
y the component of intersection of W!(q) with X’ containing r’, and note that the local Poincaré
transformation o generated by X’ and X takes y to the linear space L (in local coordinates of X').
The mapping oy = Jyo is Cl-close to o for large N and takes y to Ly for which equality (18) is
valid. Thus, we get equality (19) for the perturbed vector field.

This equality implies that there exists a constant C > 0 such that if (y; v, w) er+ L, then

[v] < Clwl]. (20)

Fix a > 0 such that B(4a, p) C U. Take a point & = (0;a,0) € E{ and a positive number T and set
ar = (ry; aexp(—AT), 0), where ry is the y-coordinate of r. Construct a pseudotrajectory as follows:

_Je,n, t<0,
8O = :¢>(t,ar), t>0.

Since
[r—or|=aexp(—AT) -0

as T — oo, for any d there exists T such that g is a d-pseudotrajectory.
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Lemma 3. Assume that b € (0, a) satisfies the inequality

log K — log C + (% — 1) <log% — 10gb> > 0.
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Then for any T > 0O, reparametrization h, and a point s € r + L such that |r — s| < b there exists T € [0, T]

such that

[¢(h(7),5) — g(D)| >

N Q

Proof. To get a contradiction, assume that

p(h(T).5) — g(T)| < % Te[0,T].
Let s = (yo; Vo, Wo) €1+ L. Since |r —s| < b,
[vol <b.
By (21),
¢(h(r),s)eU, tel0,T]

Take T =T in (21) to show that
a
[volexp(Ah(T)) > 5

It follows that
1 a
h(T) > A log5—10g|vo| .

Set 6(t) = |exp(P1h(T))wo|; then 6(0) = |wo|. By (20),
[vol < C6(0).
By (10),
0(T) > K exp(1h(T))6(0).

We deduce from (22)-(25) that

log<@> > 1og6(T) — log|vo exp(Ah(T))|

>log K +10g0(0) — log|vo| + (u — A)h(T)

a
>logK —logC + (% - 1) (5 - 10g|vo|>

>logK —logC + (% —1)(% —logb) > 0.

(21)

(22)

(23)

(24)

(25)
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We get a contradiction with (21) for T =T since the norm of the w-coordinate of ¢ (h(T), s) equals
6(T), while the w-coordinate of g(T) is 0. The lemma is proved. O

Let us complete the proof of Theorem 1 in case (B1). Assume that [, 3y > 0 are chosen for X' so
that the LE holds.

Take € € (0, min(8o, €0,a/2)) so small that if |y —r| < €, then ¢(t, y) intersects X at a point s
such that

dist(¢(t,s), 1) <eo, |t| <le. (26)

Consider the corresponding d and a d-pseudotrajectory g described above.
Assume that

dist(¢(h(t),x), g(t)) <€, teR, (27)

for some point x and reparametrization h and set y = ¢ (h(0), x).
Then |y —r| < ¢, and there exists a point s = ¢ (7, y) € ¥ with |7]| <le.
If —le <t <0, then

dist(¢(t,s), 07 (r, ¢)) < €0

by (26).
If t < —lg, then h(0) + T +t < h(0), and there exists t’ < 0 such that h(t') = h(0) + t + t. In this
case,

o(t.s) =¢(h(0) + 1 +t,x) =p(h(t),x),

and

dist(¢(t, s), 07 (1, ¢)) < dist(¢(h(t'), x), ¢ (t',1)) < €.

By Lemma 2, s er + L. If € is small enough, then |s — r| < b, where b satisfies the condition of
Lemma 3, whose conclusion contradicts (27).

This completes the consideration of case (B1) for dimW"(p) > 2. If dimWU!(p) =1, then the
nontransversality of W¥(q) and W*(p) implies that L C E®. This case is trivial since any shadowing
trajectory passing close to r must belong to the intersection W (q) N W*(p), while we can ¢onstruct
a pseudotrajectory “going away” from p along W¥(p). If dimW¥(p) =0, W¥(q) and W*(p) cannot
have a point of nontransverse intersection.

Case (B2). Passing from the vector field X to —X, if necessary, we may assume that p is a closed
trajectory. We “linearize” X in a neighborhood of p as described in the proof of Lemma 1 so that the
local Poincaré transformation of transverse section X is a linear mapping generated by a matrix P
with the following properties: With respect to some coordinates in X,

P =diag(Ps, Py), (28)

where |A;| <1 for the eigenvalues A; of the matrix Ps, and |;| > 1 for the eigenvalues A; of the
matrix P,, every eigenvalue has multiplicity 1, and P is in a Jordan form.

The same reasoning as in case (B1) shows that it is possible to perform such a “linearization”
(and other perturbations of X performed below) so that the nontransversality of W¥(q) and W*(p)
is preserved.

Consider an eigenvalue A of P, such that |A| <|u| for the remaining eigenvalues u of Py.

Please cite this article in press as: S.Yu. Pilyugin, S.B. Tikhomirov, Vector fields with the oriented shadowing property, ]J.
Differential Equations (2009), doi:10.1016/j.jde.2009.09.024

© O N O g~ W N =

10

-
g


Original text:
Inserted Text:
contruct


© 0 N O O~ W N =

-
-

JID:YJDEQ AID:6046 /FLA [miG; v 1.20; Prn:2/10/2009; 15:59] P.13 (1-31)
S.Yu. Pilyugin, S.B. Tikhomirov / J. Differential Equations eee (eeee) eee—ecee 13

We treat separately the following two cases.

Case (B2.1): A eR.
Case (B2.2): L€ C\R.

Case (B2.1). Applying a perturbation, we may assume that
Py = diag(x, P1),
where |A| < |u| for the eigenvalues w of the matrix Pq (thus, there exists a one-dimensional direction

of “weakest expansion” in WY(p)). In this case, we apply precisely the same reasoning as that applied
to treat case (B1) (we leave details to the reader).

Case (B2.2). Applying one more perturbation of X, we may assume that
. 27Tm i
A=V+in=pexp 4 ,

where m1 and m are relatively prime natural numbers, and

P, =diag(Q, P1),

(Vv —n
7 (n v )
with respect to some coordinates (y,v,w) in ¥, where p = |A| < || for the eigenvalues u of the

matrix Pj.
Denote

where

E*={(y,0,0)}, E*={0,v,w)}, EY ={(0,v,0)}.

Thus, E* is the “stable subspace,” E* is the “unstable subspace,” and EY is the two-dimensional “un-
stable subspace of the weakest expansion.”

Geometrically, the Poincaré transformation o : ¥ — X (extended as a linear mapping to EY) acts
on EY as follows: the radius of a point is multiplied by o, while 2rm;/m is added to the polar angle.

As in the proof of Lemma 1, we take a small neighborhood W of the origin of the transverse
section X so that, for points x € W, the function o (x) (the time of first return to X') is defined.

We assume that the point r of nontransverse intersection of W'(q) and W*(p) belongs to the
section X. Similarly to case (B1), we perturb X so that, in a neighborhood of r, the component of
intersection of W% (q) N X containing r has the form of an affine space, r + L.

Let /7" be the projection in X' to E" parallel to E°, and let IT}' be the projection to EY; thus,

m“(y,u,v)=(0,u,v) and II}(y,u,v)=(0,u,0).
The nontransversality of W¥(q) and W*(p) at r means that
L' =I"L +# E"

(see case (B1)). Applying a reasoning similar to that in case (B1), we perturb X so that if L” = L' N EY,
then

dimL” < dimEY =2.
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Hence, either dimL” =1 or dim L” = 0. We consider only the first case, the second one is trivial.
Denote by A the line L”. Images of A under degrees of o (extended to the whole plane EY) are m
different lines in EY.
In what follows, we refer to an obvious geometric statement (given without a proof).

Proposition 1. Consider Euclidean space R" with coordinates (x1, ..., xp). Let X' = (x1,x2), X" = (x3, ..., Xp),
and let G be the plane of coordinate X'. Let D be a hyperplane in R" such that

DNG={x;=0}

For any b > 0 there exists ¢ > 0 such that if x = (x',x") € D and X' = (X}, X,), then either |x,| < b|x,| or
X" > c|x'|.

Take a > 0 such that the 2a-neighborhood of the origin in X belongs to W. We may assume that
if v=(v1, vy), then the line A is {v, =0}.
Take b > 0 such that the images of the cone

C={v: [va| <blv1]}

in EY under degrees of o intersect only at the origin (denote these images by C1, ..., Cin).
We apply Proposition 1 to find a number ¢ > 0 such that if (0, v, w) € L/, then either (0, v,0) € C
or

lw| = c|v]. (29)

Take a point 8 = (0,v,0) € X, where |v|=a, such that ¢ C; U---UCp.

For a natural number N, set By = (ry, Pu‘N(v, 0)) € X (we recall that equality (28) holds), where r,
is the y-coordinate of r. We naturally identify 8 and Sy with points of M and consider the following
pseudotrajectory:

o, m, t<0;

g(t)z{qs(r,ﬁ,\,),bo.

The following statement (similar to Lemma 2) holds: there exists €y > 0 such that if
dist(¢(t,5), 0~ (r,¢)) <€o, <0,
for some point s € X, then ser+ L.
Since B does not belong to the closed set C; U--- U Cp, we may assume that the disk in E}

centered at S and having radius €9 does not intersect the set C; U---U Cp,.
Define numbers

ar(N)=a(Bn),  w(N=ai(N)+a(cBy), .... anN)=an_1(N) +a(ae"1(Bn).
Take 8y and [ for which LE holds for the neighborhood W (reducing W, if necessary). Take
€ <min(ep/l, o) and assume that there exists the corresponding d (from the definition of the class

OrientSh). Take N so large that g is a d-pseudotrajectory.
Let h be a reparametrization; assume that

lo(h(0), po) — g®)] <&, 0<t<an(N),

for some point pg € X.
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Since g(ak(N)) € ¥ for 0 <k < N by construction, there exist numbers yj such that
0% (po) — g(etx(N))| < €0, O<k<N.

To complete the proof of Theorem 1, let us show that for any po € r + L and any reparametrization
h there exists t € [0, n(N)] such that

dist(¢(h(®), po). g(t)) > €.
Assuming the contrary, we see that
|o%(po) — g(ax(N))| < €0, 0<Kk<N,

where the numbers x; were defined above.
We consider two possible cases.
If

M'poeC
(C is the cone defined before estimate (29)), then
Mo X (pg) € CLU---UCp.
By construction, I} g(an(N)) is . Hence,
|1} o N (po) — IT1 g (an (N)) | > €0,

and we get the desired contradiction.
If

Iipo ¢ C

and po = (Yo, Vo, Wo), then (0, vg, wg) € L', and it follows from (29) that |wg| > c|vg|. In this case,
decreasing &g, if necessary, we apply the reasoning similar to Lemma 3.
Thus, we have shown that

Int' (OrientSh \B) C Int! (KS) =S. (30)
It was shown in [13] that S C StSh; since the set S is C'-open and SN B =,
S c Int!(StSh\B) C Int! (OrientSh \ B). (31)

Inclusions (30) and (31) prove Theorem 1.

By Lemma 1, if X € Int!(OrbitSh), then X e Int' (7). For nonsingular flows, the latter inclusion
implies that X is §2-stable [14] (note that this is not the case for flows with rest points [15]). Now,
based on the second part of the proof of Theorem 1, one easily proves Theorem 3 following the same
lines as in [4, Theorem 4].
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3. Proof of Theorem 2

Consider a vector field X* on the manifold M = $2 x S2 that has the following properties (F1)-(F3)
(¢* denotes the flow generated by X*).
(F1) The nonwandering set of ¢* is the union of four rest points p*, g*, s*, u*.
(F2) For some § > 0 we can introduce coordinates in the neighborhoods B(§, p*) and B(8, g*) such

that
X*x)=Jp(x—p*), x€B@,p*), and X*(x)=]Jg(x—q"), xe€B(@,q",
where
-1 0 0 0
=== o o 1
0 0 1 1

(F3) The point s* is an attracting hyperbolic rest point. The point u* is a repelling hyperbolic rest
point. The following condition holds:

WHPH\{p" ) CWi(s),  Wi@)\{g"} cwhw"). (32)
The intersection of W*(p*) N W!(q*) consists of a single trajectory «*, and for any x € o*, the
condition
dim T,W*(p*) ® TyW"(q") =3 (33)
holds.

These conditions imply that the two-dimensional manifolds W*(p*) and W"(q*) intersect along
a one-dimensional curve in the four-dimensional manifold M. Thus, W*%(p*) and WY(g*) are not
transverse; hence, X* € B.

A construction of such a vector field is given in Appendix A.

To prove Theorem 2, we show that X* € Int! (OrientSh).

The vector field X* satisfies Axiom A and the no-cycle condition; hence, X* is §2-stable. Thus,
there exists a neighborhood V of X* in the C'-topology such that for any field X € V, its nonwan-
dering set consists of four hyperbolic rest points p, q, s, u which belong to small neighborhoods of
p*, q*, s*, u*, respectively. We denote by ¢ the flow of any X € V and by W*(p), W!(p), etc. the
corresponding stable and unstable manifolds.

Note that if the neighborhood V is small enough, then there exists a number ¢ > 0 (the same for
all X € V) such that

B(c,s*) c W3(s) and B(c,u™) c W"(u).

Consider the set ® = WU (p*) N dB(8, p*) (where dA is the boundary of a set A). Condition (32)
implies that there gxist a neighborhood Ue of ® and a number T > 0 such that

¢*(T,x) € B(c/2,s"), xeUp.
Reducing V, if necessary, we may assume that

WHY(p)NaB(Ss,p) CUp and ¢(T,x) € B(c,s*), xeUgp.
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Hence, W (p) \ {p} € W5(s), and
Wl (p) N W53 (q) = 9. (34)

Similarly, we may assume that W5(q) \ {q} Cc W!(u).
The following two cases are possible for X € V.

(S1) Wi (p)ynWh(q) = 0.
(S2) Wi (pynWh(q) # 9.

In case (S1), X is a Morse-Smale field; hence, X € S. Since S C StSh (see [13]), X € OrientSh.

Remark 1. In fact, it is shown in [13] that if a vector field X € S does not have closed trajectories (as
in our case), then X has the Lipschitz shadowing property without reparametrization of shadowing
trajectories: there exists L > 0 such that if g(t) is a d-pseudotrajectory with small d, then there exists
a point x such that

dist(g(t), ¢(t.x)) <Ld, teR.
We refer to this fact below.

Thus, in the rest of the proof of Theorem 2, we consider case (S2). Our goal is to show that if the
neighborhood V is small enough, then X € OrientSh.

Lemma 4. If the neighborhood V is small enough, then the intersection W*(p) N WU (q) consists of a single
trajectory.

Proof. Denote x’;, =a*NJB(s, p*) and xj; =a*NaJB(s,q).

Consider sections Qp and Qq transverse to « at the points xj;, and xj, respectively, and the cor-
responding Poincaré map F*:Qg — Q,. Consider the curves E;‘ =W(pHNQpnN B(5/2,x;§) and
& = WS(@*)NQqNB(5/2, x3)- Note that &7 and F*(&;) intersect at a single point xj.

Let &, =WS(p)NQpN B(8/2,x§) and & =W"(@ NQgN B(8/2,xf§). Let F be the Poincaré trans-
formation for X from Qg to Q similar to F*.

If the neighborhood V is small enough, then the curves &, &, and F(&;) are C'close to &5, &4,
and F*(&]), respectively (hence, the intersection of &; and F(&q) contains not more than one point).

The same reasoning as in the proof of (34) shows that if the neighborhood V is small enough,
x € W*%(p) \ {p}, and the trajectory of x does not intersect &y, then x € W (u).

Thus, any trajectory in W*(p) N W¥(q) must intersect &p; similarly, it must intersect £ as well as
F(&p).

lqt follows that the intersection WS(p) N W¥(q) (which is nonempty since we consider case (S2))
consists of a single trajectory containing the unique point x, of intersection of £, and F(&) (we
denote this trajectory by «). This completes the proof of Lemma 4. O

Remark 2. Let us note an important property of intersection of W*(p) and W¥(q) along « (see (36)
below).

Let x; = F~1(xp); denote by i, and iy unit tangent vectors to the curves &, and &; at X, and xg, re-
spectively. Our reasoning above and condition (33) show that if the neighborhood V is small enough,
then the vectors i, and DF(xq)iq are not parallel:

DF (xq)ig { ip. (35)

Take any two points y, = ¢ (t1,xp) and yq = ¢ (t2, Xg) with t1 >0, 5 <O0; let S, and S be smooth
transversals to « at these points. Let e, and e be tangent vectors of S, " W*(p) and S; N W!(q) at
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yp and yq, respectively. Denote by f:Sq— Sp, Hp:Qp — Sp, and Hq:Sq — Qq the corresponding
Poincaré transformations for X. Then f =Hp o F o Hg,

ep | DHy(xp)ip, and eq || DHy ' (xg)ig.
Hence, Df (yq)eq || DHp o DF(xq)ig, and it follows from (35) that

Df(yq)eq fep. (36)

Now it remains to show that if V is small enough and X € V, then X € OrientSh (recall that we
consider case (S2)). This proof is rather complicated, and we first describe its scheme.

We fix two points yp, yq € o in small neighborhoods U, and Ug of p and g, respectively (the
choice of U, and Uy is specified later). We consider special pseudotrajectories (of type Ps): the “mid-
dle” part of such a pseudotrajectory is the part of o between y; and y,, while its “negative” and
“positive” tails are parts of trajectories that start near y, and y,, respectively. We show that our
shadowing problem is reduced to shadowing of pseudotrajectories of type Ps.

The key part of the proof is a statement “on four balls.” It is shown that if By,..., B4 are small
balls such that By and B4 are centered at points of W*(q) and W"(p), while B, and B3 are centered
at yq and yp, respectively, then there exists an exact trajectory that intersects B1, ..., B4 successfully

as time grows. This statement (and its analog) allows us to prove that pseudotrajectories of type Ps
can be shadowed.

Let us fix points yp, yq € @ (everywhere below, we assume that y, = a(T,) and yq = a(Ty) with
T, > Tg) and a number § > 0. We say that g(t) is a pseudotrajectory of type Ps(8) if

¢t —Tp,xp), t>Tp,
gty=4 ¢t —Tq xg), t<Tg, (37)
al(t), t €[Tq, Tpl,

for some points
xp € B(8,yp) and x4€ B, yq).

Fix an arbitrary ¢ > 0. We prove the following two statements (Propositions 2 and 3). In these
statements, we say that a pseudotrajectory g(t) can be e-shadowed if there gxist a reparametrization
h and a point p such that (2) holds.

An 2-stable vector field has a continuous Lyapunov function that strictly decreases along wan-
dering trajectories (see [16]). Hence, there exist small neighborhoods U, and Ug of points p and q,
respectively, such that

ot,x)¢Ug, xeUp, t=>0. (38)
Proposition 2. For any § > 0, yp € @ N Up, and yq € oo N Uyq there exists d > 0 such that if g(t) is a d-
pseudotrajectory of X, then either g(t) can be e-shadowed or there exists a pseudotrajectory g*(t) of type

Ps(8) with these y, and yq such that dist(g(t), g*(t)) <¢&/2,t e R.

Proposition 3. There gxist § > 0, yp €  NUp, and yq € o N Uy such that any pseudotrajectory of type Ps(5)
with these y, and yq can be & /2-shadowed.

Clearly, Propositions 2 and 3 imply that X € OrientSh.
To prove Proposition 2, we need an auxiliary statement.
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Lemma 5. For any x € o and €, &1 > 0 there exists d > 0 such that if
{g: te R} NB(e1,x) =1, (39)
for a d-pseudotrajectory g(t), then one can find xo € M and h(t) € Rep such that
dist(g(t). ¢(h(t),x0)) <&, teR.

Proof. Take A < &1/2 such that if ap = ¢(1,x) and a4 = ¢(—1,x), then ap,aq ¢ B(A,x). Let S, and
Sq be three-dimensional transversals to « at a, and agq, respectively. Let f: Sq— S, be the corre-
sponding Poincaré mapping. Note that the intersections W"(q) N Sq and W*(p) NS, near a4 and a,
are one-dimensional, hence the curves f(W"(q) NSy) and W*(p) NS, in S, are nontransverse.

It is shown in [11,17] that there exists an arbitrarily small perturbation of the field X supported
in B(A,x) and such that the Poincaré mapping f:Sq — Sp of the perturbed field X satisfies the
condition

F(W"@NSq) N (Wi (p)N'Sp) =9

Similarly to case (S1), we conclude that we can find Xes. ~
Set &, = min(e, €1/2) and find d > 0 such that any d-pseudotrajectory of the field X can be &;-
shadowed. We assume, in addition, that

A+d<e. (40)

Consider an arbitrary d-pseudotrajectory g(t) of X for which (39) holds. By (40), g(¢) is a d-pseudo-
trajectory of the field X. Due to the choice of d, there gxist Xo € M and h(t) € Rep such that

dist(g(t), ¢(h(t), X)) < &2,

where ¢ is the flow of X. Hence, {¢(h(t),x0), t € R} N B(eq,x) = &; it follows that ¢(h(t), xg) =
¢ (h(t), xo), which proves Lemma 5. O

Proof of Proposition 2. Take § > 0, yp e NUp, and yq € a N Uq. Let yg = a(Tq) and yp = a(Tp).
There exists é; € (0, min(8, €)) such that B(81,y,) C Up, B(81, yq) C Ug, and if xp € B(61,yp) and
Xq € B(81, yq), then

Dt —Tp,xp), t>Tp,
gr () =1 a), t € [Tq, Tpl, (41)
Ot —Tq. %), t<Tg,

is a pseudotrajectory of type Ps(§).

Take x = «(T), where T € (Tq, Tp). Applying Lemma 5, we can find &1 > 0 such that if d is small
enough, then for any d-pseudotrajectory g(t), one of the following two cases holds (after a shift of
time):

(A1) {g®), teR}NB(e1,x) =0,
and g(t) can be g-shadowed;

(A2) &(Tp) € B(61/2,yp),  &(Tq) € B(81/2,yq).

dist(g(t), a(t)) <€/2, te[Tq, Tpl.

To prove Proposition 2, it remains to consider case (A2).
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Apply the same reasoning as in Lemma 5 to construct a field X € S that coincides with X outside
B(81/2, yq); let ¢ be the flow of X.

Note that X does not have closed trajectories. Reducing d, if necessary, we may assume that any
d-pseudotrajectory of X can be 8;/2-shadowed in the sense of Remark 1.

Consider the mapping

i Pt —Tp, g(Tp)), t<Tp,
E®) =1 g0, telTy, T],

$E—T,gT), t>T,

where
T =inf{t > Tp: g,(t) € B(1,yq)}
(if {t > Tp: gp(t) € B(81,yq)} =¥, we set T = +o0). Since
B(81/2,g(t)) N B(51/2, yq) =¥
for t € [Tp, T), &p(t) is a d-pseudotrajectory of X. Hence, there exists a point Xp such that
dist(gp (1), d(t — Tp.xp)) <61/2, teR.

The first inclusion in (A2) implies that x, € B(8, yp).

Since trajectories of X and X coincide outside B(81/2,yq), we deduce from (38) that T = 4o0;
hence,

dist(g(t), ¢ (t — Tp,xp)) <81/2, t=Tp.

Similarly (reducing d, if necessary), we find x4 € B(8, yq) such that

dist(g(t), ¢ (t — Tq, xg)) <81/2, t<Tq.
Clearly, the mapping (41) is a pseudotrajectory of type Ps(8) such that
dist(g(t), g*(t)) <€/2, teR.
This completes the proof of Proposition 2. O

In the remaining part of the paper, we prove Proposition 3. Let us recall that we consider a vector
field X in a small neighborhood V of X* for which W*(p) N W¥(q) # @.
Without loss of generality, we may assume that

0" (B(g/2,s),¢) CB(e,s) and O (B(¢/2,u),¢) C B(e,u).

Take m € (0, £/8) such that B(m, p) C Up, B(m,q) C Uy and the flow of the vector field X in the
neighborhoods B(2m, p) and B(2m, q) is conjugate by a homeomorphism to the flow of a linear vector
field.

We take points yp, = «(Tp) € B(m/2,p) N and yq = «(Ty) € B(m/2,q) N . Then O (yp, ¢) C
B(m, p) and O~ (yq,¢) C B(m,q). Take § > 0 such that if g(t) is a pseudotrajectory of type Ps(3)
(with y, and yq fixed above), to € R, and xq € B(28, g(to)), then
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dist(¢ (t — to, x0). g(1)) <€/2, |t —to| <T+1, (42)
where T =Tp — Tq.

Consider a number t > 0 such that if x € W¥(p) \ B(m/2, p), then ¢(t,x) € B(g/8,s). Take €1 €
(0, m/4) such that if two points z1, z; € M satisfy the inequality dist(z1, z2) < &1, then

dist(¢(t, z1), p(t,22)) <€/8, |t|<T.

In this case, for any y € B(e1,x) (recall that we consider x € W (p) \ B(m/2, p)), the following in-
equalities hold:

dist(¢(t,x), ¢ (t, y)) <&/4, >0, (43)
Reducing &1, if necessary, we may assume that if X' € WS(q) \ B(m/2,q) and y’ € B(e1,x’), then
dist(o(t,X), ¢(t, y)) <e/4, t<O0.

Let g(t) be a pseudotrajectory of type Ps(§), where 8, yp, and yq satisfy the above-formulated
conditions. We claim that if § is small enough, then g(t) can be &/2-shadowed (in fact, we have to
reduce § and to impose additional conditions on y, and yg). Below we denote Wlﬁ‘)c(p, m)=W"(p)n
B(m, p), etc.

Additionally decreasing 8, we may assume that for any points zp € Wl"(‘)c(p, m), Xo € B(8, yp), and
s> 0 such that ¢(s, xo) € B(8, zp), the following inclusions hold:

¢ (t,x9) € B2m, p), tel0,s]. (44)

Let us consider several possible cases.

Case (P1): xp ¢ W3(p) and x4 ¢ W¥(q). Let
T'=inf{t € R: ¢(t.xp) ¢ B(p,3m/4)}.

If § is small enough, then dist(¢(T’,xp), W*(p)) < &1. In this case, there exists a point z, €
WY (p,m)\ B(m/2, p) such that

dist(¢(T', xp), zp) < €1. (45)

Applying a similar reasoning in a neighborhood of g (and reducing §, if necessary), we find a point
zg € W} (q,m)\ B(m/2,q) and a number T” < 0 such that dist(¢(T", xg), zg) < €1.

loc
Let us formulate a key lemma which we prove later (precisely this lemma is the above-mentioned

statement “on four balls”).

Lemma 6. There exists m > 0 such that for any points
ypeBm,p)yna,  z,e Wy (p.m)\{p)},
ye€BM @) Nee,  zg€ Wi (g,m)\ {q},

and for any number my > O there exists a trajectory of the vector field X that intersects successively the balls
B(my, zq), B(m1, yq), B(m1, yp), and B(my, z) as time grows.
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We reduce m to satisfy Lemma 6 and apply this lemma with m; = min(é, €1). Find a point xo and
numbers t1 <ty < t3 < t4 such that

¢(t1,X0) € B(my,zq),  ¢(t2,%0) € B(my, yq),
¢(t3,X%0) € B(m1,yp),  ¢(t4,Xo) € B(my, zp).
Inequalities (42) imply that if § is small enough, then
dist(¢(t3 +t,x0), g(Tp +1)) <&/2, te[Tq—Tp,0]. (46)
Define a reparametrization h(t) as follows:
h(Tg+T"+t)=t1+t, t<0,
WTp+T +t)=ts+t, t>0,

h(Tp +1t) =t3+t, te[Tq—Tp, 0],
h(t) increases, te[Tp, Tp+TTU[Tq+T", Tql.

h(t) =

If t > T, + T’, then inequality (43) implies that

dist(¢(h(t), x0),p(t — (Tp +T'), 2p)) < &/4

and
dist(¢ (t — Tp. xp). p(t = (Tp + T'), 2p)) < £/4.

Hence, if t > T + T/, then

dist(¢(h(t), x0), g()) < &/2. (47)

Inclusion (44) implies that for t € [Ty, T, + T'] the inclusions ¢ (h(t), xo), g(t) € B(m, p) hold, and
inequality (47) holds for these t as well.

A similar reasoning shows that inequality (47) holds for t < Tq. If t € [Tq, Tp], then inequality (47)
follows from (46). This completes the proof in case (P1).

[Case (P2):] x, € W3(p) and x4 ¢ W!(q). In this case, Lemma 6 is replaced by the following statement.
Lemma 7. There exists m > 0 such that for any points

yp€Bm,p)Na,  ygeBmq@Na,  zge W (q,m)\{q},

and a number my > 0 there exists a trajectory of the vector field X that intersects successively the balls
B(mq, zq), B(m1, yq), and B(my, yp) N W} (p, m) as time grows.

loc

The rest of the proof uses the same reasoning as in case (P1).
Case (P3): x, ¢ W3(p) and x; € W¥(q). This case is similar to case (P2).

Case (P4): xp € W¥(p) and x; € WH(q). In this case, we take o as the shadowing trajectory; the
reparametrization is constructed similarly to case (P1).

Thus, to complete the consideration of case (S2), it remains to prove Lemmas 6 and 7.
To prove Lemma 6, we first fix proper coordinates in small neighborhoods of the points p and q.
Let us begin with the case of the point p.
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Taking a small neighborhood V of the vector field X*, we may assume that the Jacobi matrix
Jp =DX(p) is as close to |} as we want.
Thus, we assume that p =0 in coordinates u1 = (X1,x2), U2 = (X3,Xx4), and J, = diag(Ap, Bp),

where
(M 0 _(ap —bp
w0 %) = ) )

A, A2,ap,by > 4g, (49)

and

where g is a small positive number to be chosen later (and a similar notation is used in Ug).
Then we can represent the field X in a small neighborhood U of the point p in the form

(A, 0 uq X12(uq, u2)
X(u1,u2)_< Op Bp><u2)+<x34(u1,uz))’ (50)

where
X12, X34 €€, [Xizler, X34l <& X12(0,0) = X34(0, 0) = (0, 0). (51)
Under these assumptions, p =0 is a hyperbolic rest point whose two-dimensional unstable manifold
in the neighborhood U is given by u; = G(u1), where G:R?> — R?, G € C'. We can find g > 0 such
that if the functions X1, and X34 satisfy relations (51), then
IDG1)| <1 while (uy,G(ur)) € U. (52)
We introduce new coordinates in U by v(uq, uy) = (u1, up — G(u1)) and use a smooth cut-off function

to extend v to a C' diffeomorphism w of M such that w(x) = x outside a larger neighborhood U’ of p.
Denote by Y the resulting vector field in the new coordinates.

Remark 3. Note that Y is continuous but not necessary C!. Nevertheless, the following holds. Let S
and S be small smooth three-dimensional disks transverse to a trajectory of Y and let fy be the cor-
responding Poincaré transformation generated by the vector field Y. Consider smooth disks w~=1(S7)
and w~1(Sy) and let fx:w~1(S1) - w~1(S2) be the corresponding Poincaré transformation. Since
fxecCl and fy =wo fx ow™!, we conclude that fy e C!. We will use this fact below.

If (vq,vy) =v(uq,uy), then
ur=vy, Uuy=va+Gvy). (53)
Let Y(vq1, vy) = (Y1(vq, v2), Ya(vq, v2)). Since the surface u; = G(uq) is a local stable manifold of the
rest point O of the field X, the surface v, =0 is a local stable manifold of the rest point 0 of the
vector field Y. Hence,
Y>(v1,0)=0 for (vq,0) e v(U).
Lemma 8. The inequalities
|Y2(vi,v2) — (Y2(v1,0) + Bpva)| < 2g|val,  (vi,v2) € v(U), (54)

hold.
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Proof. Substitute equalities (53) into (50) to show that
Y2(v1,v2) = Bp(v2 4+ G(v1)) + X34(v1, v2 + G(v1)) — DG(v1)(Apvi + X12(v1, v2 + G(v1))).
Relations (51) and (52) imply that
|X34(v1.v2 + G(v1) — X34(v1. G(v1))| < glval
and
IDG(v1)(Apvi + X12(v1, v2 + G(v1))) — DG(v1)(Apvi + X12(v1. G(v1)))| < glval.
Hence,

|X34(vi, v2 + G(v1)) — X34(v1. G(v1))
— (DG(v1)(Apvi + X12(v1. v2 + G(v1))) — DG(v1)(Apvi + X12(v1, G(v1))))| < 2g|val.

The left-hand side of the above inequality equals |Y2(v1,v2) — (Y2(v1,0) 4+ Bpva)|, which proves
inequality (54). O

Note that if yp, yq,zp, zq, and m; > 0 are fixed, then there exists m* > 0 such that if a trajectory
B* of the vector field Y intersects successfully the balls B(m*, v(zq)), B(m*, v(yq)), B(m*, v(yp)), and
B(m*, v(zp)), then the trajectory w~1(8*) of X has the property described in Lemma 6.

Thus, it is enough to prove Lemma 6 for the vector field Y. Since the mapping w is smooth, the
vector field Y satisfies condition (36).

To simplify presentation, denote Y by X and its flow by ¢. In this notation, there exists a neigh-
borhood U, of p =0 in which

X(x) = ('Lz)p Bop)x—i-Xp(x), (55)

where X, € €%, and if (x1, x2, X3, X4) € U, then
|P34Xp (X1, %2, %3, X4)| < 2gmax(|xs|, [x4]) and P3,Xp(x1,%2,0,0)=0 (56)

(where we denote by P§4 the projection in U, to the plane of variables x3, x4 parallel to the plane
of variables x1, x2). Conditions (56) imply that the plane x3 = x4 =0 is a local stable manifold for the
vector field X.

Introduce polar coordinates r, ¢ in the plane of variables x3, x4. In what follows (if otherwise is
not stated explicitly), we use coordinates (x1,x2,7, ). For i € {1,2,3,4,r, ¢}, we denote by Pl.px the
ith coordinate of a point x € U.

Since the surface W"(p) is smooth and transverse to the plane x3 = x4 = 0, there exist numbers
K > 0 and my > 0 such that if points x € W! (p,my) and y € B(m;y, p) satisfy the equality P§4x =

loc
P%,y, then
dist(x, y) < K dist(y, Wj. .(p, my)). (57)

We reduce the neighborhood U, so that U, C B(my, p).
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Lemma 9. Let x(t) = (x1(t), x2(t), r(t), @(t)) be a trajectory of the vector field X. The relations

d d
i€ ((ap —4g)r, (ap +4g)r) and ¥ (bp —4g, by +48) (58)
hold while x(t) € U.

Proof. Let x3(t) = PYx(t) and x4(t) = PLx(t). Relations (48), (55) and (56) imply that

d
—x3(t) = apx3(t) — bpxa(t) + As(t)

de
and

d

EM(D = bpx3(t) + apxa(t) + As(t),
where

|A3®)], |As®)] < 2gr(t). (59)

Since x3(t) =r(t) cos@(t) and x4(t) =r(t) sin(t), we obtain the equalities

d
r?= rbp + As(t) cos @ — As(t) sing

and
d .
ar =apr + A3(t) cos @ + A4(t) sing.
Inequalities (59) imply that

d
bp —4g < E(p<bp+4g

and
d
(ap —49)r < &r < (ap +49r,

which proves our lemma. 0O

A similar reasoning shows that there exists a neighborhood U of the point g in which we can
introduce (after a smooth change of variables) coordinates (y1, ¥2, ¥3, y4) (and the corresponding
polar coordinates (r, ¢) in the plane of variables ys3, y4) such that

Wp.(q,m) C{ys=ys=0}

and for any trajectory y(t) = (y1(t), y2(t), r(t), ¢(t)) of the vector field X, the relations

d d
i€ ((ag —4g)r, (ag +4g)r) and a?e (—bq — 48, —bq +48)

hold while y(t) € Ug.
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Let us continue the proof of Lemma 6.

Let S, C Up and Sq C Uy be smooth three-dimensional disks that are transverse to the vector field
X and contain the points y, and yq, respectively. Denote by f :S; — S, the corresponding Poincaré
transformation (generated by the field X). We note that f € C! (see Remark 3) and fyg)=yp.

Consider the lines I, = S, "W} (p,m) and l; = SqNW/ (g, m) and unit vectors e, €lp and eq €.

Let P§4 and P§4 be the projections to the planes of variables x3, x4 and ys3, y4 in the neighborhoods
Uy and Uy, respectively. Relation (36) implies that

PY.Df(yq)eq#0 and P1,Df '(ypep #0. (60)
Take m3 € (0, my) such that
¢t x)eUp, x€B(ms, yp), te(0,7(),

and

P(t,y) €Uq, yeB(m3, yg), te(rq(x),0),
where

7, (x) =inf{t > 0: PP (¢(t,x)) > Pfz,},

7q(x) =sup{t < 0: P} (¢ (t,y)) > P/z,},

and zp, zq are the points mentioned in Lemma 6.
Consider the surface L, C S, defined by

Lp={x+ @ —yp), xlp, ye flp).

Let Ly = f~'Lp C Sg. The surfaces L, and Lq are divided by the lines I, and Ig into half-surfaces. Let
L} and LS be any of these half-surfaces.

To any point x € L; N f(L:{) there correspond numbers rp(x) = PPx and rg(x) = P! f~1(x); con-
sider the mapping w : L; N f(Lq+) — R? defined by w(x) = (rp(x), rq(x)). We claim that there exists a
neighborhood U; C L; N f(L;f) of the point y, on which the mapping w is a homeomorphism onto
its image.

Let rp and ¢g be the polar coordinates of the vector P§4Df(yq)eq. Relation (60) implies that ro # 0.
Hence, there exists a neighborhood Vg of the point y4 in Sq such that if y € Vg, then

PYDf (y)eq € [ro/2,2r0] and PgDf (y)eq € [¢o — 7 /8, ¢o + 7 /8]. (61)
Take ¢ > 0 such that B(2c, yq) C Vq4. Note that

8

f(yq+3deq)=f(yp + / Df (yq +seq)eqds, 8€]0,cl.
0

Conditions (61) imply that

g

8}, s e[0,cl, (62)

Pg(f()’q +(Seq) - f(.Vq)) € |:(/70 - %7 @o +
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and the mapping Qp(6):[0,c] — R defined by Qp () = Pff(yq + deq) is a homeomorphism onto
its image. Similarly (reducing g, if necessary), one can show that if x € B(g, y,), then the mapping
Qq.x(8):[0, g] — R defined by Qq.x(8) = Plf1(x+ dep) is a homeomorphism onto its image.

Take §p.8¢ € [0,c] and let x = dpep + f(yq + dqq). Then rp(x) = Qp(8g) and rg(x) =
Qq. f(yg+54eq) (8p)- 1t follows that the mapping w is a homeomorphism onto its image. Indeed, if g1 > 0

is small enough, then the mapping w=(£, ) = (x(€), Q; 3¢, (1)), where x(§) = f(yq + Q, ' (§)eg), is
uniquely defined and continuous for (&, n) € [0, g1] x [0, g1].
We reduce ms so that the following relations hold:

m3<c, B(ms,yp)NLy CcUr and B(ms.yp)NLic f U
Let us prove a statement which we use below.

Lemma 10. For any my > 0 there exist numbers 1,13 € (0, my) and T, T, > 0 with the following property:
ify(s):[0,1] —» L; is a curve such that

PPy@=r.  PPy()=r, (63)
and
y(s)eLy NB(my,yp), sel0,1], (64)
then there exist numbers t € [T, T1] and s € [0, 1] such that
¢(T.y(5)) € B(my, zp).
Proof. Let r, = Prpzp and ¢, = pr’zp. For r > 0, denote

logr, —logr and T (1) = logr, — logr.

Tmin(r) =
mm() ap+4g ap_4g

Note that if r <}, then Tpax(r) > Tmin(r) and that Ty, (r) — oo as r — 0. Take T > 0 such that if
T >T, xe B(my, yp), and

¢(t.x) CUp, tel0,1],

then
. u m
dist(Wp (p.m), ¢ (7,%)) < K (65)
Take rq, 12 € (0, min(my, rp)) such that
ra>rq, Tmin(r2) > T,
and
(bp —48)Tmin(r1) — (bp +48) Tmax(r2) > 4. (66)
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Set T1 = Tmax(r1) and Ty = Tyin(r2). Since the function y(s) is continuous, inclusions (58) and in-
equalities (49) imply that there exists a uniquely defined continuous function t(s):[0,1] — R such
that

PYo(T(s), ¥ (s)) =Tp.
It follows from inclusions (58) and equalities (63) that
7(0) € [Tmin(r): Tmax(D)]. T(1) € [Tmin(r2). Tmax ()], T(s) € [T2, T1].
Now we apply relations (49), (58), and (62) to show that
Pg$(7(0), ¥ (0) = (bp —48) Tmin(r1) + po — 7 /8
and
Pod (T (1), ¥ (1) < (bp +48) Tmax(12) + 9o +77/8.

Since the function t(s) is continuous, the above inequalities and inequalities (66) imply the existence
of s € [0, 1] such that

PPy (z(s), () =¢p mod 2.

Hence, P§4¢(r(s), y(9) = P§4zp. It follows from this equality combined with relations (57), (65), and
the inequality 7(s) > T that ¢ (7 (s), y(s)) € B(m1/2, zp), which proves Lemma 10. O

Let r1,r € (0,my) and Ty, Ty > 0 be the numbers given by Lemma 10. Consider the set
Ap={o(t.x): te[~T1,—Ta], xe C1B(my/2,zp)} NL}.

Note that A, is a closed set that intersects any curve y (s) satisfying conditions (63) and (64).
We apply a similar reasoning in the neighborhood Ug to the vector field —X to show that there
exist numbers r, 1}, € (0,my) and T}, T} > 0 such that the set

Ag={ot.x): t € [Ty, T}], xe CIB(m2/2,2)} N L7
is closed and intersects any curve y(s):[0,1] — L; N B(mjy, yq) such that
Ply(©)=r{ and Ply(1)=r}.
We claim that
Ap N f(Ag) # 9, (67)

which proves Lemma 6.

Consider the set K C L} N f(L) bounded by the curves k; =L} N {(PPx=r1}, ky = Ly N{PPx =1},
ky=f(LiN {P}y=r}}), and k; = fagn {P}y =r}}). Since w(x) is a homeomorphism, the set K is

homeomorphic to the square [0, 1] x [0, 1].
The following statement was proved in [18].
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Lemma 11. Introduce in the square I = [0, 1] x [0, 1] coordinates (u, v). Assume that closed sets A, B C I are
such that any curve inside I that joins the segments u = 0 and u = 1 intersects the set A and any curve inside
I that joins the segments v = 0 and v = 1 intersects the set B. Then AN B # (.

The set Ay is closed. By Lemma 10, A, intersects any curve in K that joins the sides k1 and k;.
Similarly, the set Aq is closed and intersects any curve that belongs to f ~1(K) and joins the sides
f71(K}) and f~1(k}). Thus, the set f(Aq) intersects any curve in K that joins the sides k} and k,. By
Lemma 11 inequality (67) holds. Lemma 6 is proved.

Proof of Lemma 7. Similarly to the proof of Lemma 6, let us consider the subspaces L; and L;,* and a

number my € (0,m1) and construct the set Aq C L;r. Note that the set f~1(B(my, yp) NW3(p)n L;)
contains a curve that satisfies conditions (63) and (64). Hence, B(m1, yp) N W3(p) N f(Aq) # ¥. For
any point in this intersection, its trajectory is the desired shadowing trajectory. O
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Appendix A. Construction of the vector field X*

Consider two 2-dimensional spheres M1 and Mj. Let us introduce coordinates (r1, ¢1) and (12, ¢2)
on M and My, respectively, where 1,1, € [—1, 1] and ¢1, ¢ € R/27Z. We identify all points of the
form (—1, -) as well as points of the form (1, -). Denote

MT ={(@1, 1), 11 >0} and M7 ={(1,¢1), 1 <0}.

Consider a smooth vector field X; defined on MT such that its trajectories (r1(t), ¢1(t)) satisfy the
following conditions:

dr—l d =0, r=0;
dr]_’ dt(pl_’ 1=U;

—r1>0, r>0;
! 1

—r1=0, rn=1.
dtl 1

We also assume that, in proper local coordinates in a neighborhood of the “North Pole” (1, -) of the
sphere M1, the vector field X; is linear, and

Dx1(1,~>=(_02 _01)~

Thus, (1,-) is an attracting hyperbolic rest point of X;, and every trajectory of X; in M}“ tends to
(1, -) as time grows.

Consider a smooth vector field X, on M; such that its nonwandering set £2(X3) consists of two
rest points: a hyperbolic attractor s; = (0, ) and a hyperbolic repeller u; = (0, 0). Assume that, in
proper coordinates, the vector field X, is linear in neighborhoods of s; and uy, and

DX3(s2) = —DXa(up) = <:} _1]> :
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Consider the vector field X defined on MT x My by the following formula

XT(r1, 91,12, 92) = (X1(r1. 1), 1§ X2 (r2. 92)).

Consider infinitely differentiable functions gq :M;r — R, g2,83:[-1,11 > [—1,1], and g4: MT —
[0, 1] satisfying the following conditions:

810,00=0:  gi(r,¢1) €(0.2m),  (r,¢1) #0,
§5(r2) €(0,2), r2e[-1,11;
80 <0, gE-DH=-1, D=1

g3(r2) =2rp — g2(r2), r2€[-1,1];
9

£4(0,0)=1/2, 8—g4(0,0)¢0-
1

Note that the functions g, and g3 are monotonically increasing.
Consider a mapping f*: M;r x My — M7 x M3 defined by the following formula:

Frr, 1,12, 902) = (—11, 01, 8a(r1, 1) 82(r2) + (1 — g4(r1, ©1)) 83(r2), 2 + g1(r1, ¢1)).
Clearly, f* is surjective; the monotonicity of g, and gz implies that f* is a diffeomorphism.

Using the standard technique with a “bump” function, one can construct a diffeomorphism
f: MT x My — M7 x M3 such that, for small neighborhoods Uy C U3 of (1, -, s3), the following holds:

f)=f*x, x¢Us,

and f is linear in U;.
Consider the set [ ={r; =0, r, =0, ¢, =0}. Simple calculations show that

f(hn1={(0,0,0,0)}, (68)

and the tangent vectors to I and f() at (0,0,0,0) are parallel to the vectors (0,1,0,0) and
0,1, (g200) - g3(0))%g4(0, 0), -), respectively. Hence,

dim(T0,0,0,0)! @ T(0,0,0,0 f (D) = 2. (69)

Define a vector field X~ on M; x M; by the formula

X~ =-Df(fT' @)Xt (f ')

(and note that x(t) is a trajectory of X* if and only if f(x(—t)) is a trajectory of X ™).
Finally, we define the following vector field X* on M x M;:

+
X () = Xj(x), Xe Ml_ x Mo,
X" (%), xeM; x Ma.
Let us check that the vector field X* is well-defined on the set {r; = 0}. Indeed, X (0, ¢1,712, ¢2) =
(1,0,0,0) and (Df(0, @1, 12, 92))~1(1,0,0,0) = (—1,0,0, 0). It is easy to see that DX (0, ¢1,r2, ¢2) =
DX~ (0, ¢1, 12, ¢2) = 0. This implies that X e Cl.
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Let us prove that the vector field X* satisfies conditions (F1)-(F3). Let (r1(t), @1(t), 2(t), p2(t)) be
a trajectory of X*. The following inequalities hold:

d
arl >0, r #=x1. (70)

This implies the inclusion £2(X*) C {r; = &1}. By the construction of X, (X*) N{r =1} =
{1, -,s2), (1, -, uz)}. Similarly, 2(X*)N{r1 =-1}={f(1,-,s2), f(1,-,u2)}. Denote s* = (1, -, s2), p* =
(1,-,uz), g = f(p), and u™ = f(s). Clearly, s*, u*, p*, qg* are hyperbolic rest points, s* is an attractor,
u* is a repeller, DX(p*) = J3, and DX(¢*) = J;. In addition, in small neighborhoods of p* and g*, the
vector field X* is linear.

It is easy to see that

Wi (pHNin=1={p*} and W'(p")N{rn=-1}=0.

Inequality (70) implies that any trajectory in WS(p*) \ {p*} intersects the set {r; =0} at a single
point. The definition of X+ implies that W*(p*) N {r; =0} =L Similarly, any trajectory in W¥(q*) \
{g*} intersects {ry =0} at a single point, and W¥(q*) N {r; =0} = f(0). It follows from equality (68)
that WS(p*) N {ry =0} N W¥(q*) is a single point, and hence W*(p*) N W¥(q*) consists of a single
trajectory.

Inequality (70) implies condition (32), and condition (69) implies (33).
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