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Discrete Hilbert transforms on sparse sequences

Yurii Belov, Tesfa Y. Mengestie and Kristian Seip

Abstract

Weighted discrete Hilbert transforms (an)n �→∑
n anvn/(z − γn) from �2v to a weighted L2-

space are studied, with Γ = (γn) a sequence of distinct points in the complex plane and v = (vn)
a corresponding sequence of positive numbers. In the special case when |γn| grows at least
exponentially, bounded transforms of this kind are described in terms of a simple relative to
the Muckenhoupt (A2) condition. The special case when z is restricted to another sequence
Λ is studied in detail; it is shown that a bounded transform satisfying a certain admissibility
condition can be split into finitely many surjective transforms, and precise geometric conditions
are found for the invertibility of two such weight transforms. These results can be interpreted as
statements about systems of reproducing kernels in certain Hilbert spaces of which de Branges
spaces and model subspaces of H2 are prime examples. In particular, a connection to the
Feichtinger conjecture is pointed out. Descriptions of Carleson measures and Riesz bases of
normalized reproducing kernels for certain ‘small’ de Branges spaces follow from the results of
this paper.

1. Introduction and main results

This paper is concerned with the mapping properties of what we call discrete Hilbert transforms
in the complex plane. One aspect of this topic was treated in [7], where all unitary discrete
Hilbert transforms were described. When we now turn to questions about boundedness,
surjectivity, and invertibility, results of the same generality seem at present out of reach.
The results to be presented below are complete only when the discrete Hilbert transforms are
defined on particularly sparse sequences. We will nevertheless present the problems in the most
general setting, as we believe they merit further investigations. We emphasize the connection
with topics such as Carleson measures and Riesz bases of normalized reproducing kernels in
Hilbert spaces of analytic functions; this will lead us to the most intriguing general question,
namely whether or not the Feichtinger conjecture holds true for systems of reproducing kernels
in such spaces.

We begin by assuming that we are given an infinite sequence of distinct points Γ = (γn) in
C and a corresponding sequence of positive numbers v = (vn), both indexed by the positive
integers. We define the weighted Hilbert transform as the map

(an) �−→
∞∑

n=1

anvn

z − γn
, (1.1)

which is well defined when (an) belongs to �2v = {(an) : ‖a‖2
v =

∑∞
n=1 |an|2vn < ∞} and z is

a point in the set

(Γ, v)∗ =

{
z ∈ C :

∞∑
n=1

vn

|z − γn|2 < ∞
}

.
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We denote the transformation defined in (1.1) by H(Γ,v) and ask if we may describe those
nonnegative measures μ on (Γ, v)∗ such that H(Γ,v) is a bounded map from �2v to L2((Γ, v)∗, μ).
This question is another version of the long-standing problem of finding criteria akin to
the Muckenhoupt (A2) condition for boundedness of two-weight Hilbert transforms (cf. the
discussion in the last three chapters of [31]).

The centrepiece of this paper is a solution to the boundedness problem when Γ is
exponentially or super-exponentially ‘sparse’, that is, when we have

inf
n�1

|γn+1|
|γn| > 1. (1.2)

In this case, (Γ, v)∗ is nonempty and in fact equal to C \ Γ if and only if
∞∑

n=1

vn

1 + |γn|2 < ∞; (1.3)

we say that v is an admissible weight sequence for Γ if (1.3) holds. When we consider the
boundedness problem for such sparse sequences Γ, it is quite natural to partition C in the
following way. Set Ω1 = {z ∈ C : |z| < (|γ1| + |γ2|)/2} and then

Ωn =
{

z ∈ C :
|γn−1| + |γn|

2
� |z| <

|γn| + |γn+1|
2

}
for n � 2.

Our solution to the boundedness problem reads as follows.

Theorem 1.1. Suppose that the sequence Γ satisfies the sparseness condition (1.2) and
that v is an admissible weight sequence for Γ. If μ is a nonnegative measure on C with μ(Γ) = 0,
then the map H(Γ,v) is bounded from �2v to L2(C, μ) if and only if

sup
n�1

∫
Ωn

vn dμ(z)
|z − γn|2 < ∞ (1.4)

and

sup
n�1

(
n∑

l=1

vl

∞∑
m=n+1

∫
Ωm

dμ(z)
|z|2 +

n∑
m=1

μ (Ωm)
∞∑

l=n+1

vl

|γl|2
)

< ∞. (1.5)

It should be noted that the condition is symmetric in the two measures
∑

n vnδγn
and μ.

This is natural since the theorem also gives a necessary and sufficient condition for the adjoint
transformation

f �−→
(∫

C

f(z) dμ(z)
z − γn

)
n

to be bounded from L2(C, μ) to �2v. The condition (1.5) can be understood as a simple relative
to the classical Muckenhoupt (A2) condition.

Besides its simplicity, the main virtue of Theorem 1.1 is its role as a tool in our study of
surjectivity and invertibility of discrete Hilbert transforms. We now turn to the latter topic and
require thus that μ be a purely atomic measure. In other words, we are interested in the case
when there are a sequence of points Λ = (λj) in (Γ, v)∗ and a corresponding weight sequence
w = (wj) such that the discrete Hilbert transform

(an)n �−→
( ∞∑

n=1

anvn

λj − γn

)
j

(1.6)

is bounded from �2v to �2w. To stress the dependence on the pair (Λ, w), we denote this
transformation by H(Γ,v);(Λ,w). A duality argument (see the next section) shows that if we
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want H(Γ,v);(Λ,w) to be a surjective map as well, then we must have

wj =
[

max
‖a‖v=1

|(H(Γ,v)a)(λj)|
]−2

=

( ∞∑
n=1

vn

|λj − γn|2
)−1

, (1.7)

up to multiplication by a sequence of positive numbers bounded away from 0 and ∞. When
Γ and v are given and Λ is a sequence in (Γ, v)∗, we say that the sequence given by (1.7)
is the Bessel weight sequence for Λ with respect to (Γ, v). The translation into this discrete
setting of Theorem 1.2, to be stated in Section 3, is surprisingly subtle: the sequence Λ splits
naturally into three subsequences, one that should be viewed as a perturbation of Γ and then
two sequences satisfying only certain ‘extreme’ sparseness conditions.

Our next general question is the following. If w = (wj) is the Bessel weight sequence for Λ
with respect to (Γ, v) and H(Γ,v);(Λ,w) is a bounded transformation, is it possible to split Λ into a
finite union of subsequences Λ′ such that, with w′ denoting the subsequence of w corresponding
to Λ′, each of the transformations H(Γ,v);(Λ′,w′) is surjective? As will be explained in the next
section, this question would have a positive answer should the Feichtinger conjecture hold true.
The following result answers this question when (1.2) holds.

Theorem 1.2. Suppose that the sequence Γ satisfies the sparseness condition (1.2) and
that v is an admissible weight sequence for Γ. If Λ is a sequence in C \ Γ, w is the Bessel weight
sequence for Λ with respect to (Γ, v), and the transformation H(Γ,v);(Λ,w) is bounded, then Λ
admits a splitting into a finite union of subsequences such that, for each subsequence Λ′ and
corresponding subsequence w′ of w, the transformation H(Γ,v);(Λ′,w′) is surjective.

We proceed now to our third main result, which is a general statement about invertible
discrete Hilbert transforms. The observation that leads to this result, is that the inverse
transformation, if it exists, can be identified effectively as another discrete Hilbert transform.

To make a precise statement, we introduce the following terminology. We say that a sequence
Λ of distinct points in (Γ, v)∗ is a uniqueness sequence for H(Γ,v) if there is no nonzero vector
a in �2v such that H(Γ,v)a vanishes on Λ; we say that Λ is an exact uniqueness sequence for
H(Γ,v) if it is a uniqueness sequence for H(Γ,v), but fails to be so on the removal of any one of
the points in Λ. If Λ is an exact uniqueness sequence for H(Γ,v), then we say that a nontrivial
function G defined on (Γ, v)∗ is a generating function for Λ if G vanishes on Λ but, for every
λj in Λ, there is a nonzero vector a(j) in �2v such that G(z) = (z − λj)H(Γ,v)a

(j)(z) for every z
in (Γ, v)∗. It is clear that if a generating function exists, then it is unique up to multiplication
by a nonzero constant.

We note that if Λ is an exact uniqueness sequence for H(Γ,v), then there exists a unique
element e = (en) in �2v such that H(Γ,v);(Λ,w)e = (1, 0, 0, . . .). We set ν = (νn) and � = (�j),
where

νn = vn|λ1 − γn|2|en|2, (1.8)

�1 = w−1
1 , and

�j = w−1
j |λj − λ1|−2

∣∣∣∣∣
∞∑

n=1

envn

(λj − γn)2

∣∣∣∣∣
−2

, (1.9)

presuming the series appearing in the latter expression converges absolutely. We see that,
plainly, we have absolute convergence of this series whenever Λ admits a generating function.

Our next result reads as follows.

Theorem 1.3. Suppose that every exact uniqueness sequence for H(Γ,v) admits a
generating function. Let Λ be a sequence in (Γ, v)∗ and let w be the Bessel weight sequence for



76 YURII BELOV, TESFA Y. MENGESTIE AND KRISTIAN SEIP

Λ with respect to (Γ, v). If the transformation H(Γ,v);(Λ,w) is bounded, then H(Γ,v);(Λ,w) is an
invertible transformation if and only if Λ is an exact uniqueness sequence for H(Γ,v) and the
transformation H(Λ,�);(Γ,ν) is bounded.

Note that when we write that ‘H(Λ,�);(Γ,ν) is bounded’, it is implicitly understood that
Γ ⊂ (Λ,�)∗.

We may observe that if γn → ∞ when n → ∞, then the function

Φ(z) = (z − λ1)
∞∑

n=1

envn

z − γn
, (1.10)

and its reciprocal Ψ = 1/Φ are meromorphic functions in C, and Φ is then the generating
function for Λ. We may then rewrite the expressions for ν and � as

νn = vn|Ψ′(γn)|−2 and �j = w−1
j |Φ′(λj)|−2. (1.11)

Combining Theorem 1.3 with Theorem 1.1, we obtain computable and geometric invertibility
criteria when Γ is a sparse sequence as defined by (1.2). To illustrate the nature of these criteria,
we highlight the following concrete example, where it is tacitly assumed that (1.2) holds and
that w = (wn) is the Bessel weight sequence for Λ with respect to (Γ, v).

Example 1. Set Vn =
∑n−1

m=1 vm for n > 1. Assume that both vn = o(Vn) and Vn → ∞
when n → ∞, and write Γ = (γn) and Λ = (λn), with both sequences indexed by the positive
integers. Moreover, assume that there exists a positive constant C such that

|γn − λn|
|γn| � C

vn

Vn
(1.12)

for every positive integer n.
(1) If, in addition, there is a real constant c < 1/2 such that

|γn|
|λn| − 1 � c

vn

Vn

for all sufficiently large n, then H(Γ,v);(Λ,w) is an invertible transformation.
(2) If, on the other hand, there is a positive constant c > 1/2 such that

|γn|
|λn| − 1 � c

vn

Vn

for all sufficiently large n, then H(Γ,v);(Λ(1),w(1)) is an invertible transformation, where Λ(1) =
(λ2, λ3, . . .) and w(1) = (w2, w3, . . .).

It follows from (1.12) that H(Γ,v);(Λ,w) is a bounded transformation, while the respective
conditions in (1) and (2) imply that the inverse transformations are bounded, subject to the
proviso that, when (2) holds, one point be removed from Λ. This rather puzzling example
can be seen as an analogue of the Kadets 1/4 theorem for complex exponentials [21] (cf. the
discussion in the next section). We note that if we have the precise relation

|γn|
|λn| − 1 =

1
2

vn

Vn
,

then neither H(Γ,v);(Λ,w) nor H(Γ,v);(Λ(1),w(1)) is an invertible transformation. Another curious
point is that if we replace the condition that Vn → ∞ by the assumption that supn Vn < ∞,
then (1.12) automatically implies that H(Γ,v);(Λ,w) is an invertible transformation.

An interesting feature of our results for sparse sequences is that invertibility implies that Λ
is a perturbation of Γ, in a sense to be made precise. As a consequence, we see that there may
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exist bounded transformations H(Γ,v);(Λ,w) such that no infinite subsequence Λ′ of Λ is also a
subsequence of another sequence Λ′′ for which the associated Hilbert transform is invertible.

Before we turn to the proofs of our three main theorems and a detailed discussion of further
results as alluded to above, we will place our study in context by explaining in detail how
to translate our problems and findings into statements about systems of reproducing kernels.
We are particularly interested in such systems in the distinguished case when the underlying
Hilbert space is a de Branges spaces or, more generally, a model subspace of H2. The study
of such systems has a long history, beginning with the work of Paley and Wiener on systems
of nonharmonic Fourier series, and is related to a number of interesting applications. More
recently, the advent of the Feichtinger conjecture has given additional impetus to the subject;
the special case of the conjecture pertaining to discrete Hilbert transforms appears as an
interesting setting in which the ramifications of the general Feichtinger conjecture could be
explored.

The present investigation originated in questions raised about systems of reproducing kernels.
During the course of our work, we have found it both useful and conceptually appealing to
transform the subject into a study of the mapping properties of discrete Hilbert transforms.
We have learned to appreciate that the essential difficulties thus seem to appear in a more
succinct form.

We close this section with a few words on notation. Throughout this paper, the notation
U(z) � V (z) (or equivalently V (z) � U(z)) means that there is a constant C such that U(z) �
CV (z) holds for all z in the set in question, which may be a Hilbert space, a set of complex
numbers, or a suitable index set. We write U(z) � V (z) if both U(z) � V (z) and V (z) � U(z).
As above, a sequence Γ = (γn) of distinct complex numbers will frequently be viewed as a
subset of C. Sometimes we shall need to remove a single point, say γm, from such a sequence.
The sequence thus obtained will then be written as Γ \ {γm}, where {γm} denotes the set
consisting of the single point γm.

2. Translation into statements about systems of reproducing kernels

2.1. A class of Hilbert spaces

Let H be a Hilbert space of complex-valued functions defined on some set Ω in C. We say that
a sequence Λ of distinct points in Ω is a uniqueness sequence for H if no nonzero function in
H vanishes on Λ; we say that Λ is an exact uniqueness sequence for H if it is a uniqueness
sequence for H, but fails to be so on the removal of any one of the points in Λ. If Λ is an
exact uniqueness sequence for H, then we say that a nontrivial function G defined on Ω is a
generating function for Λ if G vanishes on Λ but, for every λj in Λ, there is a nonzero function
gj in H such that G(z) = (z − λj)gj(z) for every z in Ω. It is clear that if a generating function
exists, it is unique up to multiplication by a nonzero constant.

We assume that H satisfies the following three axioms.
(A1) H has a reproducing kernel κλ at every point λ in Ω, that is, the point evaluation
functional κλ : f → f(λ) is continuous in H for every λ in Ω.
(A2) Every exact uniqueness sequence for H admits a generating function.
(A3) There exists a sequence of distinct points Γ = (γn) in Ω such that the sequence of
normalized reproducing kernels (κγn

/‖κγn
‖H) constitutes a Riesz basis for H. In addition,

there is at least one point z in Ω \ Γ for which κz 	= 0.
The second axiom (A2) may be viewed as a weak statement about the possibility of dividing

out zeros. To see this, we may observe that (A2) holds trivially if H has the property that
whenever f(λ) = 0 for some f in H and λ in Ω, we have that f(z)/(z − λ) also belongs to H.
On the other hand, (A2) and (A3) lead to a representation of functions in H (see below), which
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shows that if λ is a point in Ω \ Γ such that κλ 	= 0, then f(z)/(z − λ) is in H whenever f is in
H and f(λ) = 0. In general, however, this division property need not hold at the accumulation
points of Γ when we only assume (A2).

The Riesz basis (κγn
/‖κγn

‖H) has a biorthogonal basis, which we call (gn). By axiom (A2),
we may write G(z) = cn(z − γn)gn(z) for some nonzero constant cn. We use the suggestive
notation G′(γn) for the value of G(z)/(z − γn) at γn. The sequence gn is also a Riesz basis for
H, and therefore every vector h in H can be written as

h(z) =
∑

n

h(γn)
G(z)

G′(γn)(z − γn)
, (2.1)

where the sum converges with respect to the norm of H and

‖h‖2
H �

∑
n

|h(γn)|2
‖κγn

‖2
H

< ∞;

since point evaluation at every point z is a bounded linear functional, (2.1) also converges
pointwise in Ω \ Γ. By the assumption that h �→ (h(γn)/‖κγn

‖H) is a bijective map from H to
�2, this means that ∑

n

‖κγn
‖2
H

|G′(γn)|2|z − γn|2 < ∞ (2.2)

whenever z is in Ω \ Γ. By the last part of axiom (A3), there is at least one such z in Ω \ Γ.
Using the notation

vn =
‖κγn

‖2
H

|G′(γn)|2 ,

we may therefore deduce from (2.2) that∑
n

vn

1 + |γn|2 < ∞. (2.3)

We may now change our viewpoint: given a sequence of distinct complex numbers Γ = (γn)
and a weight sequence v = (vn) that satisfy the admissibility condition (2.3), we introduce the
space H(Γ, v) consisting of all functions

f(z) =
∞∑

n=1

anvn

z − γn

for which

‖f‖2
H(Γ,v) =

∞∑
n=1

|an|2vn < ∞,

assuming that the set (Γ, v)∗ is nonempty. Thus we obtain the value of a function f in H(Γ, v)
at a point z in (Γ, v)∗ by computing a discrete Hilbert transform.

We say that a nonnegative measure μ on (Γ, v)∗ is a Carleson measure for H(Γ, v) if there
is a positive constant C such that∫

(Γ,v)∗
|f(z)|2 dμ(z) � C‖f‖2

H(Γ,v)

holds for every f in H(Γ, v). It is now immediate that μ is a Carleson measure for H(Γ, v) if
and only if the map H(Γ,v) is bounded from �2v to L2((Γ, v)∗, μ).

2.2. Systems of reproducing kernels in H(Γ, v)

We begin again with some generalities. Let H be a complex Hilbert space and (fj) be a sequence
of unit vectors in H. We say that (fj) is a Bessel sequence in H if there is a positive constant
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C such that the inequality ∑
j

|〈f, fj〉H|2 � C‖f‖2
H

holds for every f in H. The sequence (fj) is a Riesz basic sequence in H if there are positive
constants A and B such that the inequalities

A
∑

j

|cj |2 �

∥∥∥∥∥∥
∑

j

cjfj

∥∥∥∥∥∥
2

H

� B
∑

n

|cn|2 (2.4)

hold for every finite sequence of scalars (cj). The Feichtinger conjecture claims that every
Bessel sequence of unit vectors can be expressed as a finite union of Riesz basic sequences.

In an intriguing series of papers [11, 12, 14, 15], it has been revealed that the Feichtinger
conjecture is equivalent to the long-standing Kadison–Singer conjecture [22]. We refer to the
recent paper [13] for a historical account and an interesting reformulation of the Feichtinger
conjecture.

Before turning to the special case of normalized reproducing kernels for H(Γ, v), we record
the following consequence of the open mapping theorem [29, p. 73].

Lemma 2.1. Suppose that T is a bounded linear transformation from a Hilbert space H1

to another Hilbert space H2. Then T is surjective if and only if the adjoint transformation T ∗

is bounded below.

If we let T be the map f �→ (〈f, fj〉H), then T ∗(cj) =
∑

j cjfj . Thus it follows from
Lemma 2.1 that (fj) is a Riesz basic sequence if and only if it is a Bessel sequence for which the
moment problem 〈f, fj〉H = aj has a solution f in H for every square-summable sequence (aj).
We may also set T = H(Γ,v);(Λ,w) and observe that Lemma 2.1 gives the necessary condition

wj �
( ∞∑

n=1

vn

|λj − γn|2
)−1

for surjectivity of the transformation H(Γ,v);(Λ,w).
We return now to the space H(Γ, v). We note that the reproducing kernel of H(Γ, v) at a

point z in (Γ, v)∗ is

kz(ζ) =
∞∑

n=1

vn

(z − γn)(ζ − γn)
;

this is a direct consequence of the definition of H(Γ, v). Given a sequence Λ = (λj) in
(Γ, v)∗, we associate with it the corresponding sequence of normalized reproducing ker-
nels (kλj

/‖kλj
‖H(Γ,v)). We observe that if w is the Bessel weight sequence for Λ with

respect to (Γ, v), then the transformation H(Γ,v);(Λ,w) is bounded if and only if the system
(kλj

/‖kλj
‖H(Γ,v)) is a Bessel sequence in H(Γ, v). Moreover, this transformation is both

bounded and surjective if and only if the system (kλj
/‖kλj

‖H(Γ,v)) is a Riesz basic sequence
in H(Γ, v). Thus Theorem 1.2 shows that the Feichtinger conjecture holds true for systems of
normalized reproducing kernels in H(Γ, v) whenever Γ is a sequence satisfying the sparseness
condition (1.2).

We finally note that if w is the Bessel weight sequence for Λ with respect to (Γ, v), then the
transformation H(Γ,v);(Λ,w) is invertible if and only if the system (kλj

/‖kλj
‖H(Γ,v)) is a Riesz

basis for H(Γ, v). If H(Γ, v) is obtained from a space H satisfying (A1)–(A3), as described
in the previous subsection, then Theorem 1.3 applies. In the special case when γn → ∞ as
n → ∞, we may write the meromorphic function defined in (1.10) as Φ = F/G, with G again
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denoting the generating function for Γ and F an entire function with a simple zero at each
point λj . Then the expressions appearing in (1.11) can be restated as

νn = vn

∣∣∣∣ F (γn)
G′(γn)

∣∣∣∣
2

and �j = w−1
j

∣∣∣∣ G(λj)
F ′(λj)

∣∣∣∣
2

.

2.3. First example: de Branges spaces

The prime examples of Hilbert spaces belonging to the general class described in Subsection 2.1
are found among so-called de Branges spaces and model subspaces of H2. To begin with, we
note that de Branges spaces may be defined in terms of axioms that are very similar to those
introduced above. Indeed, a Hilbert space H of entire functions that contains a nonzero element
is called a de Branges space if it satisfies the following three axioms.
(H1) H has a reproducing kernel κλ at every point λ in C, that is, the point evaluation
functional κλ : f → f(λ) is continuous in H for every λ in C.
(H2) If f is in H and f(λ) = 0 for some point λ in C, then f(z)(z − λ̄)/(z − λ) is in H and
has the same norm as f .
(H3) The function f(z) belongs to H whenever f belongs to H, and it has the same norm as f .

The general reference for de Branges spaces is the book [10]. The leading example of a de
Branges space is the Paley–Wiener space, which consists of those entire functions of exponential
type at most π that are square summable when restricted to the real line.

A space H that satisfies (H1)–(H3), will in particular satisfy (A1)–(A3) with Ω = C. Indeed,
we observe that then (H1) and (A1) coincide, and it is also plain that (H2) implies (A2). One
of the basic results in de Branges’s theory is that a space that satisfies (H1)–(H3), will have an
orthogonal basis consisting of reproducing kernels κγn

with Γ = (γn) being a sequence of real
points. Thus, in particular, (H1)–(H3) imply that our third general axiom (A3) holds. In the
case of the Paley–Wiener space, we have an orthogonal basis of reproducing kernels associated
with the sequence of integers, leading to what is known as the cardinal series or the Shannon
sampling theorem.

Another way of defining de Branges spaces is as follows. We say that an entire function E
belongs to the Hermite–Biehler class if it has no real zeros and satisfies |E(z)| > |E(z)| for z
in the upper half-plane. For a given function E in the Hermite–Biehler class, we let H(E) be
the Hilbert space consisting of all entire functions f such that both f/E and f∗/E belong to
H2. Here f∗(z) = f(z) and H2 is the Hardy space of the upper half-plane, viewed in the usual
way as a subspace of L2(R). We set

‖f‖2
H(E) =

∫∞

−∞

|f(x)|2
|E(x)|2 dx.

Then H(E) is a de Branges space, and every de Branges space can be obtained in this way
via a function E in the Hermite–Biehler class. We arrive at the Paley–Wiener space by setting
E(z) = e−iπz.

It follows from the preceding remarks that Theorems 1.1 and 1.2 apply to de Branges spaces
with orthogonal bases of reproducing kernels located at a sequence of nonzero real points γn

such that infn |γn+1|/|γn| > 1.

2.4. Second example: model subspaces of H2

Given an inner function I in the upper half-plane, we define the model subspace K2
I as

K2
I = H2 � IH2,

which is the orthogonal complement in H2 of functions divisible by the inner function I.
These spaces are, by a classical theorem of Beurling [8], the subspaces of H2 that are invariant
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with respect to the backward shift. We refer to [26–28] for information about the model theory
related to the backward shift. The elements of K2

I (originally defined in C
+) have meromorphic

extensions into C if the function I has such an extension. In this case, we have the relation
I = E∗/E and the map f �→ f/E is a unitary map from H(E) to K2

I . Thus de Branges spaces
can be viewed as a subclass of the collection of all model subspaces of H2.

We now prove that every model subspace satisfies axiom (A2) from Subsection 2.1. This is
obvious if we consider K2

I as a space of functions on the upper half-plane, but for our purposes
it is essential that we also include those points on the real line at which point evaluation makes
sense. We need the fact that the reproducing kernel for K2

I at some point ζ in the upper
half-plane is

κζ(z) =
i

2π
· 1 − I(ζ)I(z)

z − ζ
.

This formula extends to each point ζ on the real line at which every function in K2
I has

a nontangential limit whose modulus is bounded by a constant times the H2-norm of the
function. A paper of Ahern and Clark [1] gives that these are exactly the points ζ at which
I has an angular derivative, that is, at which both I and I ′ have nontangential limits and
|I(ζ)| = 1.

Lemma 2.2. The Hilbert space K2
I , viewed as a space of functions on the set

Ω = {z = x + iy : y � 0 and f �−→ f(z) is bounded},
satisfies axiom (A2) of Subsection 2.1.

To make the proof more transparent, we single out the main technical ingredient as a separate
lemma.

Lemma 2.3. If x0 is a point on the real line at which the point evaluation functional for
K2

I is bounded, then ‖κx0+iy − κx0‖H2 → 0 when y → 0.

Proof. Assuming I(x0) = 1, we may write

2π

i
(κx0+iy(t) − κx0(t)) =

1 − I(x0 + iy)I(t)
t − x0 + iy

− 1 − I(t)
t − x0

=
(1 − I(x0 + iy))I(t)

t − x0 + iy
− (1 − I(t))iyt

(t − x0)(t − x0 + iy)
.

Here the first term on the right-hand side has H2-norm bounded by a constant times y1/2 in
view of the theorem of Ahern and Clark [1], while the H2-norm of the second term tends to 0
when y → 0, by Lebesgue’s dominated convergence theorem.

Proof of Lemma 2.2. Let Λ be an exact uniqueness set for K2
I consisting of points in Ω.

We let gj denote the unique function in K2
I such that gj(λl) equals 0 when l 	= j and 1 for

l = j. We can choose an arbitrary point in Λ, say λ1, and choose G(z) = (z − λ1)g1(z) as our
candidate for a generating function. It is plain that if λj is a point in the open half-plane, then
gj(z) = G(z)/[G′(λj)(z − λj)]. The difficulty occurs if λj is a point on the real line. In this case,
if we replace λj by λj + iε, then the modified sequence Λ(ε) will still be an exact uniqueness
sequence for K2

I . In fact, by Lemma 2.3, the function g1 vanishing on Λ(ε) \ {λ1} will vary
continuously with ε. Thus the corresponding generating function Gε(z) will tend to G(z) for
every point in the upper half-plane when ε → 0. On the other hand, another application of
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Lemma 2.3 gives that Gε(z)/[G′
ε(λj + iε)(z − λj + iε)] → gj(z) in K2

I when ε → 0. Lemma 2.3
also gives that G′

ε(λj + iε) converges to a finite number, say 1/α, and we may therefore conclude
that gj(z) = αG(z)/(z − λj).

As for axiom (A3), it remains an open problem to decide whether every model subspace
K2

I has a Riesz basis of normalized reproducing kernels. Thus it is not known whether the
class of spaces introduced in Subsection 2.1 includes all model subspaces. However, there exists
an interesting class of model subspaces that actually possess orthogonal bases of reproducing
kernels associated with sequences of real points. Such bases, to be discussed briefly below,
are called Clark bases [16]. We also note that if the inner function I happens to be an
interpolating Blaschke product, then it is well known and easy to show that K2

I has a Riesz
basis of normalized reproducing kernels associated with the sequence of zeros of I.

The spaces K2
I that possess Clark bases correspond precisely to those spaces H(Γ, v) for

which Γ is a real sequence. To get from H(Γ, v) to the corresponding space K2
I , we construct

the Herglotz function

ϕ(z) =
∞∑

n=1

vn

(
1

γn − z
− γn

1 + γ2
n

)
. (2.5)

Then

I(z) =
ϕ(z) − i

ϕ(z) + i
(2.6)

will be an inner function in the upper half-plane, and the map f �→ (1 − I)f will be a unitary
map from H(Γ, v) to K2

I ; it is implicit in this construction that in fact every function in K2
I

has a nontangential limit at each point γn and also that the corresponding point evaluation
functional is bounded at γn. We refer to our recent paper [7], where Clark bases are treated in
more detail and it is shown that families of orthogonal bases of reproducing kernels can only
exist in spaces of the form H(Γ, v) when Γ is a subset of a straight line or a circle.

We conclude that our general discussion (including Theorem 1.3) applies to model subspaces
K2

I that possess Clark bases.

2.5. Carleson measures and systems of reproducing kernels in de Branges spaces and model
subspaces of H2

A long-standing problem in the function theory of de Branges spaces and, more generally, of
model subspaces K2

I is to describe their Carleson measures. Only a few special cases have been
completely understood. One such case is when I is a so-called one-component inner function,
that is, when there exists a positive number ε with 0 < ε < 1 such that the set of points z
in the upper half-plane satisfying |I(z)| < 1 − ε is connected [17, 30]. Other partial results
can be found in [2–4, 18, 19, 30]. The lack of a general result on Carleson measures and,
more specifically, on the geometry of Bessel sequences of normalized reproducing kernels is an
obvious challenge when we address the Feichtinger conjecture in this setting.

Since positive results on Carleson measures are scarce, we mention without proof the
following observation: a suitable adaption of Theorem 1.1 gives a description of any Carleson
measure μ restricted to a cone {z = x + iy : |z − x0| < Cy}; here x0 is an arbitrary real point
and C a positive constant. To arrive at this result, one may represent the space by means of
its Clark basis or more generally as an L2-space with respect to a Clark measure [16], and act
similarly as in Section 3.

A conjecture of Cohn [17], suggesting that it would suffice to verify the Carleson measure
condition for reproducing kernels, was refuted by Nazarov and Volberg [25]. In the present
paper, we likewise give a negative answer to the following question raised by Baranov.
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Question. Suppose that Γ and Λ are disjoint sequences of real numbers and that γn ↗ ∞.
If w is the Bessel weight sequence for Λ with respect to (Γ, v) and H(Γ,v);(Λ,w) is a bounded
transformation, then is it true that there is a uniform bound on the number of λj found between
two points γn and γn+1?

A slight modification of our general approach will lead to a suitable example, to be presented
in Subsection 3.4, with no such uniform bound.

It was recently shown by Baranov and Dyakonov [6] that the Feichtinger conjecture holds
true for normalized reproducing kernels for K2

I when either I is a one-component inner function
or the points λj associated with the sequence of reproducing kernels κλj

satisfy

sup
j

|I(λj)| < 1. (2.7)

In the latter case, a complete description of Riesz basic sequences exists [20], and this result
plays an essential role in the proof. Baranov and Dyakonov used their result for the case
when (2.7) holds to treat the general case of one-component inner functions. Their approach,
following a technique used in [5], was to split the half-plane into two regions, one in which
|I(z)| is bounded away from 1 and another in which a perturbation argument for Clark bases
applies.

Our results complement those of [6] and show that, in general, one needs additional ideas
to resolve the Feichtinger conjecture for normalized reproducing kernels for model subspaces.
First of all, since Γ satisfies the sparseness condition (1.2), the corresponding inner function I,
defined by (2.6) via (2.5), is not a one-component inner function. Moreover, as will be revealed
in Subsection 5.3, there exist inner functions I and Bessel sequences of normalized reproducing
kernels κλj

/‖κλj
‖2 for K2

I such that |I(λj)| → 1 but no infinite subsequence is a subsequence
of a Riesz basis.

By the observation made at the end of the previous subsection, the problem of describing all
Riesz bases of normalized reproducing kernels for K2

I is part of the problem of deciding when
discrete Hilbert transforms H(Γ,v);(Λ,w) are bounded. The most far-reaching result known about
such bases is that found in [20] dealing with the case when (2.7) holds. The general result in
[20] for this particular case leads to a description of all Riesz bases of normalized reproducing
kernels for the Paley–Wiener space and also for a wider class of de Branges spaces known as
weighted Paley–Wiener spaces [24]. One of the main points of [20] is that when (2.7) holds,
one can transform the problem into a question about invertibility of Toeplitz operators and
then apply the Devinatz–Widom theorem. Another approach, closer in spirit to the present
work, can be found in [23], where the Riesz basis problem is explicitly related to a boundedness
problem for Hilbert transforms.

2.6. Third example: ‘small’ Fock-type spaces

It may be noted that our work gives a full description of the Carleson measures and the Riesz
bases of normalized reproducing kernels for certain ‘small’ Fock-type spaces studied recently
by Borichev and Lyubarskii [9]. The spaces H considered by these authors consist of all entire
functions f such that

‖f‖2
ϕ =

∫
C

|f(z)|2e−2ϕ(|z|) dm(z) < ∞,

where ϕ is a positive, increasing, and unbounded function on [0,∞) and m denotes Lebesgue
area measure on C. The main point of [9] is that if ϕ grows ‘at most as fast’ as [log(1 + r)]2,
then the corresponding space H has a Riesz basis of reproducing kernels and, conversely,
if the growth of ϕ is ‘faster’ than [log(1 + r)]2, then no such basis exists. It is proved that
when ϕ(r) = [log(1 + r)]2, we can choose such a basis associated with a sequence Γ = (γn)
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satisfying |γn| = en/2; if ϕ(r) = [log(r + 1)]α with 1 < α < 2, then the growth of |γn| will be
super-exponential.

In view of the observations in the previous subsections, the results of Borichev and Lyubarskii
clarify when a Fock-type space equals a de Branges space, that is, when the two spaces consist
of the same entire functions and have equivalent norms.

3. The boundedness problem

3.1. Proof of Theorem 1.1

In what follows, we use the notation

V1 = 1, Vn =
n−1∑
j=1

vj and Pn =
∞∑

j=n+1

vj

|γj |2 . (3.1)

Proof of the necessity of the conditions in Theorem 1.1. We observe first that the necessity
of (1.4) is obvious: just apply H(Γ,v) to the sequence e(n) = (e(n)

m ) with e
(n)
n = 1 and e

(n)
m = 0

for m 	= n.
To show that (1.5) is also a necessary condition, we begin by looking at the sequence

c(n) = (c(n)
m ) so that c

(n)
m = 1 for m < n and c

(n)
m = 0 otherwise. We observe that ‖c(n)‖2

v = Vn

and note that, for z in Ωl and l � n, we have

|H(Γ,v)c
(n)(z)|2 =

∣∣∣∣∣
n−1∑
m=1

vm

z − γm

∣∣∣∣∣
2

� V 2
n

|z|2 .

Taking into account the boundedness of H(Γ,v), we deduce from this that

Vn �
∫

C

|H(Γ,v)c
(n)(z)|2dμ(z) � V 2

n

∑
m�n

∫
Ωm

dμ(z)
|z|2 .

On the other hand, if we set a(n) = (a(n)
m ) so that a

(n)
m = 1/γm for m > n and a

(n)
m = 0

otherwise, then ‖a(n)‖2
v = Pn. We note that, for z in Ωl and l � n, we have

|H(Γ,v)a
(n)(z)|2 =

∣∣∣∣∣
∞∑

m=n+1

vm

γm(z − γm)

∣∣∣∣∣
2

� P 2
n .

Thus

Pn �
∫

C

|H(Γ,v)a
(n)(z)|2 dμ(z) � P 2

n

∑
m�n

μ(Ωm).

Proof of the sufficiency of the conditions in Theorem 1.1. Let a = (an) be an arbitrary
sequence in �2v. First we make the following estimate:

∫
Ωn

|H(Γ,v)a(z)|2dμ(z) � 3
∫
Ωn

⎡
⎣
∣∣∣∣∣
n−1∑
m=1

amvm

z − γm

∣∣∣∣∣
2

+
|an|2v2

n

|z − γn|2 +

∣∣∣∣∣
∞∑

m=n+1

amvm

z − γm

∣∣∣∣∣
2
⎤
⎦ dμ(z)

�
∫
Ωn

⎡
⎣|z|−2

(
n−1∑
m=1

|am|vm

)2

+

( ∞∑
m=n+1

|am|vm

|γm|

)2
⎤
⎦ dμ(z) + |an|2vn;
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here we used the Cauchy–Schwarz inequality and (1.4). Hence it remains for us to show that

∞∑
n=1

(
n−1∑
m=1

|am|vm

)2 ∫
Ωn

|z|−2 dμ(z) �
∞∑

j=1

|aj |2vj (3.2)

and
∞∑

n=1

( ∞∑
m=n+1

|am|vm

|γm|

)2

μ(Ωn) �
∞∑

j=1

|aj |2vj . (3.3)

First we consider (3.2). To simplify the writing, we set

τn =
(∫

Ωn

|z|−2 dμ(z)
)1/2

.

By duality, ⎛
⎝ ∞∑

n=1

τ2
n

(
n−1∑
m=1

|am|vm

)2
⎞
⎠

1/2

= sup
‖(cn)‖�2=1

∞∑
n=1

|cn|τn

n−1∑
m=1

|am|vm.

Since
∞∑

n=1

|cn|τn

n−1∑
m=1

|am|vm =
∞∑

m=1

|am|vm

∞∑
n=m+1

|cn|τn,

it suffices to show that the �2-norm of

αm = v1/2
m

∞∑
n=m+1

|cn|τn

is bounded by a constant times the �2-norm of (cn). To this end, we note that the Cauchy–
Schwarz inequality gives

|αm|2 � vm

∞∑
n=m+1

|cn|2V −1/2
n

∞∑
j=m+1

τ2
j V

1/2
j .

By (1.5), we see that ∑
j:2lVm<Vj�2l+1Vm

τ2
j V

1/2
j � 1

2l/2V
1/2
m+1

for l � 0. Summing these inequalities, we get
∞∑

j=m+1

τ2
j V

1/2
j � 1

V
1/2
m+1

.

Hence

|αm|2 � vm

V
1/2
m+1

∞∑
n=m+1

|cn|2V −1/2
n .

This gives us
∞∑

m=1

|αm|2 �
∞∑

n=1

|cn|2V −1/2
n

n−1∑
m=1

vm

V
1/2
m+1

,

and so (3.2) follows because

V −1/2
n

n−1∑
m=1

vm

V
1/2
m+1

� V −1/2
n

∫Vn

0

x−1/2 dx = 2.
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We next consider (3.3). We note to begin with that the Cauchy–Schwarz inequality gives( ∞∑
m=n+1

|am|vm

|γm|

)2

�
∞∑

m=n+1

|am|2vmP
1/2
m−1

∞∑
j=n+1

vj

P
1/2
j−1|γj |2

.

Since
∞∑

j=n+1

vj

P
1/2
j−1|γj |2

�
∫Pn

0

x−1/2 dx � 2P 1/2
n ,

it follows that
∞∑

n=1

μ(Ωn)

( ∞∑
m=n+1

|am|vm

|γm|

)2

�
∞∑

n=1

μ(Ωn)P 1/2
n

∞∑
m=n+1

|am|2vmP 1/2
m ,

which becomes
∞∑

n=1

μ(Ωn)

( ∞∑
m=n+1

|am|vm

|γm|

)2

�
∞∑

m=1

|am|2vmP
1/2
m−1

m−1∑
n=1

μ(Ωn)P 1/2
n

when we change the order of summation. From (1.5) it follows that
m−1∑
n=1

μ(Ωn)P 1/2
n �

∞∑
l=0

∑
n:2lPm−1�Pn�2l+1Pm−1

μ(Ωn)P 1/2
n � 1

P
1/2
m−1

∞∑
l=0

1
2l/2

� 1

P
1/2
m−1

,

and we get (3.3).

3.2. Special cases

Condition (1.4) of Theorem 1.1 is a condition on the local behaviour of μ, while condition
(1.5) deals with its global behaviour. Combining the two conditions, we see that (1.4) may be
replaced by the stronger global condition

sup
n�1

∫
C

vn dμ(z)
|z − γn|2 < ∞.

We single out two cases in which (1.5) is automatically fulfilled once either this condition or
the original one (1.4) holds.

Corollary 3.1. Suppose that the sequence Γ satisfies the sparseness condition (1.2) and
that the numbers vn grow at least exponentially and that the numbers vn/|γn|2 decay at least
exponentially with n. If μ is a nonnegative measure on C with μ(Γ) = 0, then the operator
H(Γ,v) is bounded from �2v to L2(C, μ) if and only if

sup
n�1

∫
Ωn

vn dμ(z)
|z − γn|2 < ∞.

Corollary 3.2. Suppose that the sequence Γ satisfies the sparseness condition (1.2) and
that

∑
n vn < ∞. If μ is a nonnegative measure on C with μ(Γ) = 0, then the operator H(Γ,v)

is bounded from �2v to L2(C, μ) if and only if

sup
n�1

∫
C

vn dμ(z)
|z − γn|2 < ∞.

Both corollaries follow immediately from Theorem 1.1.
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3.3. Bessel sequences

We now switch to discrete Hilbert transforms of the form H(Γ,v);(Λ;w) with w the Bessel weight
sequence for Λ with respect to (Γ, v). As explained in Subsection 2.2, this means that we will
be dealing with Bessel sequences for H(Γ, v).

We want to disentangle condition (1.5). To this end, we split any given sequence Λ into
following three disjoint sequences:

Λ(0) =
{

λ ∈ Λ : if λ is in Ωn, then
vn

|λ − γn|2 � max
(

Vn

|λ|2 , Pn

)}
,

Λ(V ) =
{

λ ∈ Λ : if λ is in Ωn, then
Vn

|λ|2 > max
(

vn

|λ − γn|2 , Pn

)}
,

Λ(P ) =
{

λ ∈ Λ : if λ is in Ωn, then Pn > max
(

vn

|λ − γn|2 ,
Vn

|λ|2
)}

.

We say that a sequence Λ is V -lacunary if

sup
n

#

⎛
⎝Λ ∩

⋃
m:2n�Vm�2n+1

Ωm

⎞
⎠ < ∞

and P -lacunary if

sup
n

#

⎛
⎝Λ ∩

⋃
m:2−n−1�Pm�2−n

Ωm

⎞
⎠ < ∞.

Theorem 3.1. Suppose the sequence Γ satisfies the sparseness condition (1.2) and that v
is an admissible weight sequence for Γ. Let Λ be a sequence in (Γ, v)∗ and let w be the Bessel
weight sequence for Λ with respect to (Γ, v). Then H(Γ,v);(Λ,w) is a bounded transformation if
and only if supn #(Λ ∩ Ωn) < ∞, Λ(V ) is a V -lacunary sequence, Λ(P ) is a P -lacunary sequence,
and

sup
n�1

⎛
⎝Vn

∑
m�n

∑
λ∈Λ(0)∩Ωm

|λ − γm|2
vm|λ|2 + Pn

∑
m�n

∑
λ∈Λ(0)∩Ωm

|λ − γm|2
vm

⎞
⎠ < ∞. (3.4)

This splitting into a ‘super-thin’ sequence Λ(V )
⋃

Λ(P ) and a ‘distorted’ sequence Λ(0)

represents a phenomenon not previously recorded, as far as we know. Corollaries 3.1 and 3.2,
when restricted to the case of Bessel sequences, describe two situations in which the ‘super-
thin’ part does not appear, for different reasons: Corollary 3.1 covers the case when Vn grows
exponentially and Pn decays exponentially with n; Λ(V ) and Λ(P ) can then both be ‘absorbed’
in Λ(0). Corollary 3.2 covers the case when Vn is uniformly bounded so that Λ(V ) can only be
a finite sequence; the sequence Λ(P ) can again be ‘absorbed’ in Λ(0).

We conclude that the most interesting situation occurs when either vn/|γn|2 = o(Pn) or
vn = o(Vn) and Vn → ∞ as n → ∞. These two cases will be studied in depth in Section 5.

3.4. An example answering Baranov’s question

We now modify our construction to obtain an example that gives a negative answer to Baranov’s
question posed in Subsection 2.5.

We assume that (tn) is a sequence of positive numbers such that

inf
n�1

tn+1

tn
> 1.
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In addition, we assume that, for each positive integer n, we have the following cluster of n
points:

γn,l = tn + l − 1, 1 � l � n.

We denote this finite sequence by Γn and set

Γ =
∞⋃

n=1

Γn.

We consider the simplest case when the corresponding weight sequence v is identically 1, that
is, vn,l = 1 for every point γn,l in Γ.

It may be noted that if we want to describe the measures μ for which H(Γ,1) is bounded from
�2 to L2(C \ Γ, μ), then it suffices to consider the behaviour of μ in the Carleson squares

Sn = {z = x + iy : |x − γn,1| � 2n, 0 � y � 4n}.
Indeed, outside these squares, each cluster Λn has basically the same effect as if a single point
were located at, say, λn,1 with weight n. This means that Theorem 1.1 applies to describe the
behaviour of μ outside the squares Sn. In fact, by this observation, one may obtain a complete
solution to the boundedness problem for these particular sequences Γ and v. We omit this
description here and confine the discussion to a suitable example solving Baranov’s problem.

The preceding remarks indicate that the sequence Λ should be placed inside the union of
the squares Sn. We set

λn,s = γn,1 − 2s, 0 � s � log2 n

and then Λn = (λn,s)s with s running from 0 to [log2 n] (the integer part of log2 n), and

Λ =
∞⋃

n=1

Λn.

We observe that we have

wn,s =

( ∞∑
m=1

n∑
l=1

1
|γm,l − λn,s|2

)−1

� |λn,s − γn,1| = 2s.

These numbers constitute the sequence w, which is the Bessel weight sequence for Λ with
respect to (Γ, v). We now make the following claim.

Claim. If the sequences Γ, Λ, and w are constructed as above, then H(Γ,1);(Λ,w) is a bounded
transformation.

The interesting point, giving a negative answer to Baranov’s question, is that there are more
than log2 n points from Λ between the neighbouring clusters Λn−1 and Λn.

Proof of the Claim. Let a = (an,l) be an arbitrary �2-sequence associated with Γ and set

H(Γ,1)a(λ) =
∞∑

n=1

n∑
l=1

an,l

λ − γn,l
.

An application of the Cauchy–Schwarz inequality gives

[log2 n]∑
s=0

|H(Γ,1)a(λn,s)|2wn,s � n3

t2n
‖a‖2

�2 +
[log2 n]∑

s=0

2s

(
n∑

l=1

|an,l|
|λn,s − γn,l|

)2

.
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The summation over n of the first term on the right-hand side causes no problem because
tn grows at least exponentially with respect to n. We therefore concentrate on the second term

An =
[log2 n]∑

s=0

2s

(
n∑

l=1

|an,l|
2s + l − 1

)2

.

The Cauchy–Schwarz inequality gives(
n∑

l=1

|an,l|
2s + l − 1

)2

�
n∑

j=1

j−1/2

2s + j − 1

n∑
l=1

l1/2|an,l|2
2s + l − 1

.

The first of the two sums on the right-hand side is bounded by a constant times 2−s/2, and so
it follows that

An �
[log2 n]∑

s=0

2s/2
n∑

l=1

l1/2|an,l|2
2s + l − 1

.

Changing the order of summation and using that

[log2 n]∑
s=0

2s/2

2s + l − 1
� l−1/2,

we finally obtain the desired estimate

An �
n∑

j=1

|an,j |2.

4. Proof of Theorem 1.2

We use the same splitting as in Theorem 3.1 and treat the three sequences Λ(0), Λ(V ), and
Λ(P ) separately. We use Lemma 2.1, that is, we make a splitting so that, for each subsequence
Λ′ with associated weight sequence, the adjoint transformation H(Λ′,w′);(Γ,v) is bounded below.
From now on, we shall use the notation

Wn =
n−1∑
m=1

wm and Qn =
∞∑

m=n+1

wm

|λm|2 . (4.1)

4.1. The splitting of Λ(0)

We may assume that there is at most one point λn in Λ(0) from each annulus Ωn; we denote
the corresponding weights by wn. Let Λ′ = (λnj

) be a subsequence of Λ(0) with corresponding
weight sequence w′ = (wnj

), and let a = (anj
) be an arbitrary �2w′ -sequence. Since

|ξ − η|2 � |ξ|2 − 2|ξ||η| + |η|2 � 1
2 |ξ|2 − |η|2

for arbitrary complex numbers ξ and η, we have

|H(Λ′,w′);(Γ,v)a(γnj
)|2 � 1

2
|anj

|2w2
nj

|λnj
− γnj

|2 − 2

∣∣∣∣∣
j−1∑
l=1

anl
wnl

γnj
− λnl

∣∣∣∣∣
2

− 2

∣∣∣∣∣∣
∞∑

l=j+1

anl
wnl

γnj
− λnl

∣∣∣∣∣∣
2

.
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On the other hand, wnj
� |λnj

− γnj
|2/vnj

. Therefore, by the definition of Λ(0), there is a
positive constant c such that

‖H(Λ′,w′);(Γ,v)a‖2
v � c‖a‖2

w′ − 2
∞∑

j=1

⎡
⎢⎣
∣∣∣∣∣
j−1∑
l=1

anl
wnl

γnj
− λnl

∣∣∣∣∣
2

+

∣∣∣∣∣∣
∞∑

l=j+1

anl
wnl

γnj
− λnl

∣∣∣∣∣∣
2
⎤
⎥⎦ vnj

. (4.2)

Hence it remains for us to show that, for a given ε > 0, we may obtain

∞∑
j=1

(
j−1∑
l=1

|anl
|wnl

)2

vnj

|λnj
|2 � ε

∞∑
j=1

|anj
|2wnj

(4.3)

and
∞∑

j=1

⎛
⎝ ∞∑

l=j+1

|anl
|wnl

|λnl
|

⎞
⎠

2

vnj
� ε

∞∑
j=1

|anj
|2wnj

(4.4)

for every subsequence Λ′ in a finite splitting of Λ(0).
We proceed as in the proof of Theorem 1.1. Thus we set τj = v

1/2
nj /|λnj

| and consider first
(4.3). By duality,⎛

⎝ ∞∑
j=1

τ2
j

(
j−1∑
l=1

|anl
|wnl

)2
⎞
⎠

1/2

= sup
‖(cj)‖�2=1

∞∑
j=1

|cj |τj

j−1∑
l=1

|anl
|wnl

.

Since
∞∑

j=1

|cj |τj

j−1∑
l=1

|anl
|wnl

=
∞∑

l=1

|anl
|wnl

∞∑
j=l+1

|cj |τj ,

it suffices to show that the �2-norm of

αl = w1/2
nl

∞∑
j=l+1

|cj |τj

can be made smaller than ε times the �2-norm of (cj). To this end, we note that the Cauchy–
Schwarz inequality gives

|αl|2 � wnl

∞∑
j=l+1

|cj |2W−1/2
nj

∞∑
m=l+1

τ2
mW 1/2

nm
.

Using (1.5), we get
∞∑

m=l+1

τ2
mW 1/2

nm
� 1

W
1/2
nl+1

.

Hence

|αl|2 � wnl

W
1/2
nl+1

∞∑
j=l+1

|cj |2W−1/2
nj

.

This gives us
∞∑

l=1

|αl|2 �
∞∑

j=1

|cj |2W−1/2
nj

j−1∑
l=1

wnl

W
1/2
nl+1

,
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and so (4.3) would follow if we could obtain
j−1∑
l=1

wnl

W
1/2
nl+1

� cεW 1/2
nj

(4.5)

for an absolute constant c.
Having singled out this goal, we proceed to consider (4.4). We note to begin with that the

Cauchy–Schwarz inequality gives⎛
⎝ ∞∑

l=j+1

|anl
|wnl

|λnj
|

⎞
⎠

2

�
∞∑

l=j+1

|anl
|2wnl

Q1/2
nl−1

∞∑
m=j+1

wnm

Q
1/2
nm−1 |λnm

|2
.

Now our goal will be to obtain
∞∑

m=j+1

wnm

Q
1/2
nm−1 |λnm

|2
� cεQ1/2

nj
. (4.6)

Indeed, this would imply

∞∑
j=1

⎛
⎝ ∞∑

l=j+1

|anl
|wnl

|λnl
|

⎞
⎠

2

vnj
� ε

∞∑
j=1

vnj
Q1/2

nj

∞∑
l=j+1

|anl
|2wnl

Q1/2
nl−1

= ε

∞∑
l=1

|anl
|2wnl

Q1/2
nl−1

l−1∑
j=1

vnj
Q1/2

nj
.

By (1.5), we have
l−1∑
j=1

vnj
Q1/2

nj
� 1

Q
1/2
nl−1

,

and so it will suffice to have (4.6).
In order to obtain the two estimates (4.5) and (4.6) for every subsequence in our finite

splitting of Λ(0), we make a splitting according to the following algorithm:
(1) Let δ be a small positive number to be chosen later. Select those n for which wn > δWn.

If we choose Λ′ to consist of every Nth λn in the corresponding subsequence of Λ(0), then
we get

j−1∑
l=1

wnl

W
1/2
nl+1

� 2
δN

W 1/2
nj

by again comparing the sum to the integral of the function x−1/2 over the interval from 0 to
Wnj

. Thus we achieve our goal if we choose N to be of the order of magnitude 1/(δε).
(2) Return to those points λnj

not selected in (1). For these we have wnj
� δWnj

.
Group these points into blocks of points with consecutive indices such that, for each block,
δ �

∑
wnj

W−1
nj

< 2δ. Construct new subsequences by picking every Nth block from this
sequence of blocks. Then some elementary estimates, again using comparisons with an integral,
lead to the following inequality:

j−1∑
l=1

wnl

W
1/2
nl+1

� 16δ

1 − (1 − 2δ)N
W 1/2

nj
,

where we sum over the new subsequence. Thus it would suffice if we choose N to be roughly
1/δ and δ to be a suitable constant times ε.

(3) Take one of the subsequences selected in (1) or (2) and consider the subsequence of this
subsequence, say Λ′ = (λnj

), along which wnj
|λnj

|−2 > δQnj
. If we select a new subsequence
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by picking every Nth λnj
in the sequence Λ′, then the sum in (4.6) becomes smaller than

2/(δN)Qnj
by the same argument as in (1). Again our goal is achieved if we choose N to be

of the order of magnitude 1/(δε).
(4) Take again one of the subsequences selected in (1) or (2) and consider those subsequences

of these for which we have wnj
|λnj

|−2 � δQnj
. Group the points in these subsequences into

blocks of points with consecutive indices such that for each block δ �
∑

wnj
|λnj

|−2Q−1
nj

< 2δ.
Now construct new subsequences by picking every Nth block from this sequence of blocks.
Then as in point (2) we get

∞∑
m=j+1

wnm

Q
1/2
nm−1 |λnm

|2
� 16δ

1 − (1 − 2δ)N
Q1/2

nj
.

(Here the summation is again over the new subsequence.) We observe once more that it would
suffice if we choose N to be roughly 1/δ and δ to be a suitable constant times ε.

4.2. The splitting of Λ(V )

The splitting of Λ(V ) is almost identical to that of Λ(0). We now use the estimate

|H(Λ′,w′);(Γ,v)a(γn)|2 � 1
2

|anj
|2w2

nj

|λnj
− γn|2

− 2

∣∣∣∣∣
j−1∑
l=1

anl
wnl

λnj
− γn

∣∣∣∣∣
2

− 2

∣∣∣∣∣∣
∞∑

l=j+1

anl
wnl

γn − λnl

∣∣∣∣∣∣
2

. (4.7)

The reason we write ‘γn’ instead of ‘γnj
’ is that we need to sum over several annuli Ωn in order

to estimate the norm of ‖a‖w. Indeed, we may assume that λnj
belongs to a union of annuli

Ωn, denoted by Δj , such that ∑
γn∈Δj

vn

|λnj
− γn|2 � 1

10
Vnj

|λj |2 ,

with the sets Δj being pairwise disjoint. Therefore, by the definition of Λ(V ), there is a constant
c such that ∑

γn∈Δj

|anj
|2w2

nj

vn

|λnj
− γn|2 � c|anj

|2wnj
.

Hence we obtain

‖H(Λ′,w′);(Γ,v)a‖2
v � c‖a‖2

w′ − 2
∞∑

j=1

∑
γn∈Δj

⎡
⎢⎣
∣∣∣∣∣
j−1∑
l=1

anl
wnl

λnj
− γn

∣∣∣∣∣
2

+

∣∣∣∣∣∣
∞∑

l=j+1

anl
wnl

λnj
− γn

∣∣∣∣∣∣
2
⎤
⎥⎦ vnj

.

The splitting is then done in essentially the same way as above, repeating the reasoning based
on the estimate (4.2).

4.3. The splitting of Λ(P )

We use once more (4.7), but this time we may assume that λnj
belongs to a union of annuli

Ωn, again denoted by Δj , such that∑
γn∈Δj

vn

|λnj
− γn|2 � 1

10
Pnj

,

with the sets Δj being pairwise disjoint. Therefore, by the definition of Λ(P ), there is a constant
c such that ∑

γn∈Δj

|anj
|2w2

nj

vn

|λnj
− γn|2 � c|anj

|2wnj
.
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Hence we obtain

‖H(Λ′,w′);(Γ,v)a‖2
v � c‖a‖2

w′ − 2
∞∑

j=1

∑
γn∈Δj

⎡
⎢⎣
∣∣∣∣∣
j−1∑
l=1

anl
wnl

λnj
− γn

∣∣∣∣∣
2

+

∣∣∣∣∣∣
∞∑

l=j+1

anl
wnl

λnj
− γn

∣∣∣∣∣∣
2
⎤
⎥⎦ vnj

,

and proceed as outlined in the previous paragraph.

5. The invertibility problem

5.1. Proof of Theorem 1.3

It is clear that if the mapping H(Γ,v);(Λ,w) is invertible; then Λ is an exact uniqueness sequence
for H(Γ,v), which in turn implies that there is a unique element e = (en) in �2v such that H(Γ,v)e
vanishes on Γ \ {λ1} and takes the value 1 at λ1. Then

G(z) = (z − λ1)
∞∑

n=1

envn

z − γn

is a generating function for Λ. Since by assumption G(λj) = 0 for j > 1, we may write

G(z) = G(z) − G(λj) = (z − λj)
∞∑

n=1

envn(γn − λ1)
(γn − λj)(z − γn)

,

where on the right-hand side we have just subtracted the respective series that define G(z) and
G(λj). Since G is a generating function for Λ, it follows that

∞∑
n=1

|en|2|γn − λ1|2vn

|γn − λj |2 < ∞.

In particular, the sequence

e(j) =

⎛
⎝en

γn − λ1

γn − λj

( ∞∑
m=1

emvm(λ1 − γm)
(λj − γm)2

)−1
⎞
⎠

n

will be the unique vector in �2v such that H(Γ,v)e
(j)(λl) is 0 when l 	= j and 1 for l = j.

To simplify the writing, we set

αj =

( ∞∑
m=1

emvm(λ1 − γm)
(λj − γm)2

)−1

;

thus if b = (b1, b2, . . . , bl, 0, 0, . . .) is a sequence with only finitely many nonzero entries, then
the sequence

a =

⎛
⎝en(γn − λ1)

l∑
j=1

bjαj

γn − λj

⎞
⎠

n

(5.1)

will be the unique vector in �2v such that H(Γ,v);(Λ,w)a = b. This means that we have identified a
linear transformation, defined on a dense subset of �2w, that must be the inverse transformation
to H(Γ,v);(Λ,w), should it exist. Hence, under the assumption that Λ is an exact uniqueness
sequence for H(Γ,v), a necessary and sufficient condition for invertibility of H(Γ,v);(Λ,w) is that
the linear transformation defined by (5.1) extends to a bounded transformation on �2w. An
equivalent condition is that the transformation H(Λ,�);(Γ,ν) be bounded where

νn = vn|λ1 − γn|2|en|2
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and

�j = w−1
j

∣∣∣∣∣
∞∑

n=1

envn(λ1 − γn)
(λj − γn)2

∣∣∣∣∣
−2

= w−1
j |λj − λ1|−2

∣∣∣∣∣
∞∑

n=1

envn

(λj − γn)2

∣∣∣∣∣
−2

.

In the final step, we used the definition of the sequence (en).

5.2. Localization of Λ when Γ is a sparse sequence

We will for the rest of this section consider two interesting special cases. The main point of this
subsection will be that, although Λ may possibly have a nontrivial splitting into three sequences
Λ(0), Λ(V ), and Λ(P ) (cf. the discussion in Subsection 3.3), the invertibility of H(Γ,v);(Λ,w) forces
the sequences Λ(V ) and Λ(P ) to be trivial, in a sense to be made precise.

We assume as before that Γ = (γn) is indexed by the positive integers, and that the sequence
is sparse in the sense that (1.2) holds. We retain the notation

Vn =
n−1∑
m=1

vm and Pn =
∞∑

m=n+1

vm

|γm|2

from the previous section. In the discussion below, the sets

Dn(v;M) =
{

λ ∈ Ωn :
Mvn

|λ − γn|2 � max
(

Vn

|λ|2 , Pn

)}
,

defined for every admissible weight sequence v and positive number M , will play an essential
role. If M is fixed and either vn = o(Vn) or vn/|γn|2 = o(Pn) when n → ∞, then these sets are
essentially discs centred at γn with radii that are o(|γn|) when n → ∞. In such situations, the
splitting of a sequence Λ into the three sequences Λ(0), Λ(V ), and Λ(P ) may be nontrivial, in
the sense that Λ \⋃n Dn(v;M) may be an infinite sequence for every positive M .

We assume that Λ = (λn) is a sequence disjoint from Γ, indexed by a sequence of integers
(n0, n0 + 1, n0 + 2, . . .) and ordered such that the moduli |λn| increase with n. For convenience,
we assume that λn0 	= 0. The choice of n0 is made such that Λ is ‘aligned’ with Γ. More precisely,
we say that Λ is a v-perturbation of Γ if n0 can be chosen such that, for a sufficiently large
M , λn is in Dn(v;M) for all but possibly a finite number of indices n. If Λ is a v-perturbation
of Γ, it will be implicitly understood that n0 is chosen so that the two sequences are ‘aligned’
in this way.

A v-perturbation Λ of Γ will be said to be
(i) an exact v-perturbation of Γ if n0 = 1;
(ii) a v-perturbation of Γ of deficiency n0 − 1 if n0 > 1;
(iii) a v-perturbation of Γ of excess 1 − n0 if n0 < 1.
The main results of this subsection are the following two lemmas.

Lemma 5.1. Suppose that w is the Bessel weight sequence for Λ with respect to (Γ, v) and
that vn = o(Vn) when n → ∞. If, in addition, the transformation H(Γ,v);(Λ,w) is invertible, then
Λ is either an exact v-perturbation of Γ or a v-perturbation of deficiency 1.

Lemma 5.2. Suppose that w is the Bessel weight sequence for Λ with respect to (Γ, v) and
that vn/|γn|2 = o(Pn) when n → ∞. If, in addition, the transformation H(Γ,v);(Λ,w) is invertible,
then Λ is either an exact v-perturbation of Γ or a v-perturbation of Γ of excess 1.

Note the contrast between these results and Theorem 3.1; Λ has no nontrivial V -lacunary or
P -lacunary subsequences when H(Γ,v);(Λ,w) is an invertible transformation. We see in the next
section that, quite remarkably, all three cases, exactness, deficiency 1, and excess 1, may occur.
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The proofs of the two lemmas require several steps. We begin with a simple estimate, to be
used repeatedly in what follows. It concerns the quantity

�n =
n∏

m=max(1,n0)

|γm|2
|λm|2 ,

which will appear prominently in our conditions for invertibility. We use again the notation
introduced in (4.1), that is, we set

Wn =
n−1∑

m=n0

wm and Qn =
∞∑

m=n+1

wm

|λm|2 .

Lemma 5.3. If Λ is a v-perturbation of Γ and |γn| � |λn|, then we have both∣∣∣∣log
�m

�n

∣∣∣∣
2

� (Vm+1 − Vn+1)(Qn − Qm) (5.2)

and ∣∣∣∣log
�m

�n

∣∣∣∣
2

� (Wm+1 − Wn+1)(Pn − Pm) (5.3)

when m > n. If, in addition, either vn = o(Vn) or vn/|γn|2 = o(Pn) when n → ∞, then
log �n = o(n) when n → ∞.

Proof. Since |γn| � |λn|, we have∣∣∣∣log
�m

�n

∣∣∣∣ = 2

∣∣∣∣∣
m∑

l=n+1

log
|γl|
|λl|

∣∣∣∣∣ �
m∑

l=n+1

∣∣∣∣1 − |γl|
|λl|
∣∣∣∣ . (5.4)

Hence, by the Cauchy–Schwarz inequality, we get∣∣∣∣log
�m

�n

∣∣∣∣
2

�
m∑

l=n+1

vl

m∑
j=n+1

|γj − λj |2
vj |λj |2 ,

which is the desired estimate (5.2). Another application of the Cauchy–Schwarz inequality to
(5.4) gives ∣∣∣∣log

�m

�n

∣∣∣∣
2

�
m∑

l=n+1

|γl − λl|2
vl

m∑
j=n+1

vj

|γj |2 ,

which is the second estimate (5.3).
Finally, starting again from (5.4) and using the Cauchy–Schwarz inequality a third time,

we get

| log �n|2 � n

n∑
l=max(1,n0)

|γl − λl|2
|λl|2 � n

n∑
l=max(1,n0)

min
(

vl

Vl
,

vl

|γl|2Pl

)
,

where in the last step we used that Λ is a v-perturbation of Γ. This relation gives the last
statement in the lemma, namely that log �n = o(n) when either vn = o(Vn) or vn/|γn|2 = o(Pn)
as n → ∞.



96 YURII BELOV, TESFA Y. MENGESTIE AND KRISTIAN SEIP

We next prove the following lemma, which is really a corollary to Theorem 1.1.

Lemma 5.4. Suppose that either vn = o(Vn) or vn/|γn|2 = o(Pn) when n → ∞. If, in
addition, μ is a nonnegative measure on C with μ(Γ) = 0 and the map H(Γ,v) is both bounded
and bounded below from �2v to L2(C, μ), then there exist positive numbers M and δ such that∫

Dn(v;M)

vn dμ(z)
|z − γn|2 � δ

for all but finitely many indices n.

Proof. Applying the assumption about boundedness below to any sequence with only one
nonzero entry, we find that there is a positive number σ independent of n such that∫

C

vn dμ(z)
|z − γn|2 � σ

for every n. On the other hand, since |γn| grows at least exponentially and H(Γ,v) is bounded
from �2v to L2(C, μ), we have

∞∑
m=n+1

∫
Ωm

vn dμ(z)
|z − γn|2 � vn

∞∑
m=n+1

∫
Ωm

dμ(z)
|z|2 � min

(
vn

Vn
,

vn

|γn|2Pn

)

and
n−1∑
m=1

∫
Ωm

vn dμ(z)
|z − γn|2 � vn

|γn|2
n−1∑
m=1

∫
Ωm

dμ(z) � min
(

vn

Vn
,

vn

|γn|2Pn

)
.

We also have ∫
Ωn\Dn(v;M)

vn dμ(z)
|z − γn|2 � 1

M

∫
Ωn

max
(

Vn

|λ|2 , Pn

)
dμ(z) � 1

M
,

again using the condition for boundedness of the map H(Γ,v) : �2v → L2(C, μ). The result follows
with δ = σ/2 if we choose a sufficiently large M .

The preceding lemma shows that if the transformation H(Γ,v);(Λ,w) is invertible, then Λ must
contain a subsequence that is, a v-perturbation of Γ. The next two lemmas show that Λ itself
must be a v-perturbation of Γ.

Lemma 5.5. Suppose that vn = o(Vn) when n → ∞. If, in addition, Λ is an exact
v-perturbation of Γ, then Λ is a uniqueness sequence for H(Γ,v).

Proof. We argue by contradiction. So suppose that there is a nonzero vector a = (an) in
�2v such that H(Γ,v)a vanishes on Λ. This means that there is a nonzero entire function J(z)
such that

∞∑
n=1

anvn

z − γn
= J(z)

∞∏
m=1

1 − z/λm

1 − z/γm

for every z in C \ Γ. If we now choose M sufficiently large, then we have
Vn

|z|2 � |J(z)|2�n

for z in Ωn \ Dn(v;M). Since vn = o(Vn) when n → ∞, the left-hand side is bounded by e−δn

for some positive δ, while, by Lemma 5.3, �n = eo(n) when n → ∞. Thus the maximum of
|J(z)| in Ωn \ Dn(v;M) tends to 0 when n → ∞, which is a contradiction unless J(z) ≡ 0.



DISCRETE HILBERT TRANSFORMS ON SPARSE SEQUENCES 97

Lemma 5.6. Suppose that vn/|γn|2 = o(Pn) when n → ∞. If, in addition, Λ is a
v-perturbation of Γ of excess 1, then Λ is a uniqueness sequence for H(Γ,v).

Proof. We argue again by contradiction and assume that there is a nonzero vector a = (an)
in �2v such that H(Γ,v)a vanishes on Λ. In this case, it follows that there is a nonzero entire
function J(z) such that

∞∑
n=1

anvn

z − γn
= J(z)(z − λ0)

∞∏
m=1

1 − z/λm

1 − z/γm

for every z in C \ Γ. If we now choose M sufficiently large, then we have

Pn � |J(z)|2|z|2�n

for z in Ωn \ Dn(v;M). Since vn/|γn|2 = o(Pn) when n → ∞, we have that Pn/|z|2 is bounded
by e−δn for some positive number δ, while, by Lemma 5.3, �n = eo(n) when n → ∞. Thus the
maximum of |J(z)| in Ωn \ Dn(v;M) tends to 0 when n → ∞, which is a contradiction unless
J(z) ≡ 0.

We finally prove two lemmas that, together with the previous three lemmas, give the precise
restrictions stated in Lemmas 5.1 and 5.2.

Lemma 5.7. Suppose that vn = o(Vn) when n → ∞. If, in addition, Λ is a v-perturbation
of Γ of deficiency 2, then Λ is not a uniqueness sequence for H(Γ,v).

Proof. We may write

c

(z − γ1)(z − γ2)

∞∏
m=3

1 − z/λm

1 − z/γn
=

∞∑
n=1

anvn

z − γn
+ h(z),

where h is an entire function and

|an|2v2
n � |γn − λn|2

|γn|4 �n.

Since Λ is a v-perturbation, we therefore get
∞∑

n=1

|an|2vn �
∞∑

n=1

�n

|γn|2Vn
< ∞,

where in the final step we used that the ratio �n/Vn grows at most sub-exponentially. We
then get

|h(z)|2 � �n

|z|4 +
Vn

|z|2
when z is in Dn(v;M) with M sufficiently large. Using again that both �n and Vn grow at
most sub-exponentially, we have that h(z) → 0 when z → ∞, which means that h ≡ 0.

Lemma 5.8. Suppose that vn/|γn|2 = o(Pn) when n → ∞. If, in addition, Λ is a
v-perturbation of Γ of deficiency 1, then Λ is not a uniqueness sequence for H(Γ,v).

Proof. In this case, we may write

c

z − γ1

∞∏
m=2

1 − z/λm

1 − z/γm
=

∞∑
n=1

anvn

z − γn
+ h(z),
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where h is an entire function and

|an|2v2
n � |γn − λn|2

|γn|2 �n.

Since Λ is a v-perturbation, we get
∞∑

n=1

|an|2vn �
∞∑

n=1

�n

|γn|2Pn
< ∞,

where we now used that the ratio �n/Pn grows at most sub-exponentially. It follows that

|h(z)|2 � �n

|z|2 + Pn

when z is in Dn(v;M) with M sufficiently large. We conclude that h(z) → 0 when z → ∞,
which means that h ≡ 0.

5.3. Geometric criteria for invertibility of H(Γ,v);(Λ,w) when Γ is a sparse sequence

After the preliminary results of the previous subsection, we may now state our geometric
conditions for invertibility. We begin with the case when vn = o(Vn) as n → ∞.

Theorem 5.1. Suppose that w is the Bessel weight sequence for Λ with respect to (Γ, v) and
that Vn → ∞ and vn = o(Vn) when n → ∞. Then the transformation H(Γ,v);(Λ,w) is invertible
if and only if supn VnQn < ∞ and one of the following conditions holds.

(1) The sequence Λ is an exact v-perturbation of Γ and there are positive constants C and
δ such that

�m

�n
� C

(
Vm

Vn

)1−δ

(5.5)

whenever m > n.
(2) The sequence Λ is a v-perturbation of Γ of defect 1 and there are positive constants C

and δ such that

�m

�n
� C

(
Vm

Vn

)1+δ

(5.6)

whenever m > n.

It is quite remarkable that the essential quantitative conditions for invertibility, found in (1)
and (2), only depend on the moduli of the complex numbers γn/λn.

We note that in the case when
∞∑

n=1

vn < ∞,

the result is much simpler and less delicate. Then, as can be seen from the proof of part
(1) of Theorem 5.1, the transformation H(Γ,v);(Λ;w) is invertible if and only if Λ is an exact
v-perturbation of Γ and supn Qn < ∞. This result can be viewed as a special case of part (1)
of the theorem.

To arrive at the results stated in Example 1 (see Section 1), we note that if
|γn − λn|

|λn| � vn

Vn
,

then

Qn =
∞∑

m=n+1

wm

|λm|2 �
∞∑

m=n+1

vm

V 2
m+1

� 1
Vn+1

,
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where in the last step we compared the sum with the integral of 1/x2 from Vn+1 to ∞. We
also have, assuming |γn|/|λn| − 1 � cvn/Vn, that

log
�m

�n
� 2c(1 + o(1))

m∑
j=n+1

vl

Vl
= 2c(1 + o(1)) log

Vm

Vn
(5.7)

when m > n and n → ∞. In view of Theorem 5.1, this gives part (1) of the example; part (2)
follows by the same argument, with the inequality in (5.7) reversed.

In the case when vn/|γn|2 = o(Pn), we have the following counterpart to Theorem 5.1.

Theorem 5.2. Suppose that w is the Bessel weight sequence for Λ with respect to (Γ, v)
and that vn/|γn|2 = o(Pn) when n → ∞. Then the transformation H(Γ,v);(Λ,w) is invertible if
and only if we have supn WnPn < ∞ and one of the following two conditions holds.

(1) The sequence Λ is an exact v-perturbation of Γ and there are positive constants C and
δ such that

�m

�n
� C

(
Pm

Pn

)1−δ

(5.8)

whenever m > n.
(2) The sequence Λ is a v-perturbation of Γ of excess 1 and there are positive constants C

and δ such that

�m

�n
� C

(
Pm

Pn

)1+δ

(5.9)

whenever m > n.

There is a slight lack of symmetry between the two theorems; while it may happen that
supn Vn < ∞, we will always have that Pn → 0. Therefore, no precaution is needed concerning
the decay of Pn.

We have the following statement, in complete analogy with Example 1 and with the
same proof.

Example 2. Suppose that vn/|γn|2 = o(Pn) when n → ∞ and that supn WnPn < ∞.
(1) If, in addition, Λ is an exact v-perturbation of Γ and there is a real constant c < 1/2

such that
|λn|
|γn| − 1 � c

vn

|γn|2Pn

for all sufficiently large n, then H(Γ,v);(Λ,w) is an invertible transformation.
(2) If, on the other hand, Λ is a v-perturbation of Γ of excess 1 and there is a positive

constant c > 1/2 such that
|λn|
|γn| − 1 � c

vn

|γn|2Pn

for all sufficiently large n, then H(Γ,v);(Λ,w) is an invertible transformation.

The two final subsections of this paper will present the proof of Theorem 5.1; the proof of
Theorem 5.2 is completely analogous and will therefore be omitted.

5.4. Proof of the necessity of the conditions in Theorem 5.1

In addition to the results of Subsection 5.2, we need the following simple facts.



100 YURII BELOV, TESFA Y. MENGESTIE AND KRISTIAN SEIP

Lemma 5.9. Let c = (cn) be a sequence of positive numbers.

(i) If there is a constant C such that
∑n−1

m=1 cm � Ccn for n > 1, then there is a positive
constant δ such that cm/cn � C2δ(m−n) whenever m > n.

(ii) If there is a constant C such that
∑∞

m=n+1 cm � Ccn for every positive integer n, then

there is a positive constant δ such that cm/cn � C2−δ(m−n) whenever m > n.

Proof. We consider (i). The assumption implies that

Ncn−1 � N

n−1∑
m=1

cm � C

n+N−1∑
m=n

cm � C2cn+N .

which means that if we choose N > 2C2, then cn+j(N+1) � 2jcn. The result follows if we choose
δ = 1/(N + 2). The proof of (ii) can be performed in a similar way.

We turn to the proof of the necessity of the conditions in Theorem 5.1. Thus we begin by
assuming that H(Γ,v);(Λ,w) is an invertible transformation. Since this means that, in particular,
H(Γ,v);(Λ,w) is a bounded transformation, we must have supn VnQn < ∞. Also, in view of
Lemma 5.1, we already know that Λ is either an exact v-perturbation of Γ or a v-perturbation
of Γ of deficiency 1. Thus it remains only to establish the necessity of the conditions in parts
(1) and (2), under the respective assumptions of exactness and deficiency 1.

We treat the two cases separately.
Case 1: Λ is an exact v-perturbation of Γ. Since vn = o(Vn), the weight sequence w = (wn)

defined by (1.7) satisfies

wn � |γn − λn|2
vn

. (5.10)

As a consequence, we now obtain simple estimates for the weight sequences ν = (νn) and
� = (�j) appearing in Theorem 1.3.

We begin by noting that if Λ is a v-perturbation of Γ and an exact uniqueness sequence for
H(Γ,v), then there is a constant c such that

∞∑
n=1

envn

z − γn
=

c

z − γ1

∞∏
m=2

1 − z/λm

1 − z/γm
(5.11)

for every z in C \ Γ, where again e = (en) is the vector such that H(Γ,v);(Λ,w)e = (1, 0, 0, . . .).
Indeed, the expression on the left-hand side can have zeros only at the points λm for m > 1,
since Λ is assumed to be an exact uniqueness sequence for H(Γ,v). From (5.11) we obtain

|en|2v2
n � |λn − γn|2

|λn|2 �n,

and therefore, using (1.8) and (5.10), we obtain

νn � wn�n. (5.12)

On the other hand, differentiating (5.11) at z = λn, we get∣∣∣∣∣
∞∑

l=1

elvl

(λn − γl)2

∣∣∣∣∣ � |γn|
|λn|2|λn − γn|

n−1∏
m=1

|γm|
|λm| .

Thus using (1.9) and again (5.10), we obtain

�n � vn�−1
n . (5.13)
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To simplify the writing, we set

V (,0)
n =

n−1∑
m=1

vm�−1
m and P (,0)

n =
∞∑

m=n+1

vm|λm|−2�m−1

as well as

W (,0)
n =

n−1∑
m=1

wn�n and Q(,0)
n =

∞∑
m=n+1

wn�n|λn|−2.

By Theorems 1.1 and 1.3, we must have supn V
(,0)
n Q

(,0)
n < ∞; we will now show that the

estimate in part (1) is a consequence of this condition.
We set n1 = 2 and define nj inductively by requiring Vnj+1−1/Vnj

< 2 � Vnj+1/Vnj
. By (5.2)

of Lemma 5.3 and the uniform boundedness of VnQn, it follows that there are constants c and
C such that c < �n/�m � C when n and m both lie in the interval [nj , nj+1]. Hence we have

V (,0)
nj

�
j∑

l=1

Vnl
�−1

nl
. (5.14)

Now if

Qnj
− Qnj+1 � ε

Vnj+1

, (5.15)

then our condition supn V
(,0)
n Q

(,0)
n < ∞ and (5.14) imply that there exists a constant C

such that
j∑

l=1

Vnl
�−1

nl
� CVnj+1�

−1
nj+1

. (5.16)

If, on the other hand, we have

Qnj
− Qnj+1 <

ε

Vnj+1

,

then an application of (5.1) of Lemma 5.3 gives �nj+1/�nj
� 5/4 if ε is sufficiently small. Hence

we have
Vnj+1�nj

Vnj
�nj+1

� 8
5
,

which means that Vnj
�−1

nj
increases exponentially on any set of consecutive integers j for which

(5.15) fails. Combining (5.16) with the latter estimate, we therefore get that

j∑
l=1

Vnl
�−1

nl
�
(

5
8
C +

8
3

)
Vnj+1�

−1
nj+1

when (5.15) fails and ε is sufficiently small. Thus (5.16) holds for every index j if the constant
C is suitably adjusted. Hence, by part (i) of Lemma 5.9, there exists a constant C such that

�nj+l

�nj

� C
Vnj+l

Vnj

2−δl � C

(
Vnj+l

Vnj

)1−δ/2

,

where in the last step we used that Vnj+1/Vnj
� 4 for sufficiently large j. We are done since it

suffices to establish (5.5) for n = nj and m = nj+l.
Case 2: Λ is a v-perturbation of Γ of deficiency 1. As in the previous case, we begin by

finding estimates for the weight sequences ν = (νn) and � = (�j) appearing in Theorem 1.3.
If Λ is a v-perturbation of Γ of deficiency 1 and an exact uniqueness sequence for H(Γ,v), then
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there is a constant c such that
∞∑

n=1

envn

z − γn
=

c

(z − γ1)(z − γ2)

∞∏
m=3

1 − z/λm

1 − z/γn

for every z in C \ Γ, where again e = (en) is the vector such that H(Γ,v);(Λ,w)e = (1, 0, 0, . . .).
Arguing in the same way as in the preceding case, we obtain from this relation the estimates

νn � wn�n|γn|−2 (5.17)

and
�n � vn�−1

n |γn|2. (5.18)

We now set

V (,1)
n =

n−1∑
m=1

vn|γn|2�−1
n and P (,1)

n =
∞∑

m=n+1

vn�n

as well as

W (,1)
n =

n−1∑
m=1

wn|γn|−2�n and Q(,1)
n =

∞∑
m=n+1

wn|γn|−4�n.

By Theorems 1.1 and 1.3, we must have supn W
(,1)
n P

(,1)
n < ∞; we will now show that also

the estimate in part (2) is a consequence of this condition.
We let the sequence (nj)j be as above and find that

P (,1)
nj

�
∞∑

l=j+1

Vnl
�−1

nl
(5.19)

whenever j � 1. Now if

Qnj+1 − Qnj
� ε

Vnj+1

, (5.20)

then it follows from the condition supn W
(,1)
n P

(,1)
n < ∞ and (5.19) that

∞∑
l=j+1

Vnl
�−1

nl
� Vnj

�−1
nj

. (5.21)

As in the preceding case, we find that if ε is sufficiently small, then Vnj
�−1

nj
increases

exponentially on any set of consecutive integers j for which (5.20) fails. The relation (5.19)
implies that no such set is infinite; thus there is an infinite sequence of indices nj for which
(5.21) holds, and there must in fact be a uniform bound on the number of points found in
any set of consecutive integers j for which (5.20) fails. We may infer from this argument that
in fact (5.21) holds for every index nj � 1. Finally, we invoke part (ii) of Lemma 5.9, which
implies that there is a constant C such that

�nj+l

�nj

� C
Vnj+l

Vnj

2δl � C

(
Vnj+l

Vnj

)1+δ

,

and we are done since it suffices to establish (5.6) for n = nj and m = nj+l.

5.5. Proof of the sufficiency of the conditions in Theorem 5.1

We begin by noting that the condition supn VnQn < ∞ implies that H(Γ,v);(Λ,w) is a bounded
transformation. Indeed, (1.4) in Theorem 1.1 holds trivially when μ =

∑
n wnδλn

. We also have

Wn � |γn|2
Vn

and Pn � vn

|γn|2
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by the assumptions that vn = o(Vn) and supn VnQn < ∞. Therefore, Theorem 1.1 allows us to
conclude that H(Γ,v);(Λ,w) is a bounded transformation.

We now use Theorem 1.3 and show that the respective conditions in parts (1) and (2) in
Theorem 5.1 imply those in Theorem 1.3. The sequence (nj)j will be the same as in the previous
subsection.

Case 1: Λ is an exact v-perturbation of Γ. We already know from Lemma 5.5 that if Λ is an
exact v-perturbation of Γ, then Λ is a uniqueness sequence for H(Γ,v). To check that Λ is in
fact an exact uniqueness sequence for H(Γ,v), we note that we may write

c

z − γ1

∞∏
m=2

1 − z/λm

1 − z/γn
=

∞∑
n=1

anvn

z − γn
+ h(z),

where h is an entire function and

|an|2vn � wn

|γn|2 �n.

By the assumption that supn VnQn < ∞, we have
∞∑

n=1

|an|2vn �
∞∑

j=1

�nj

Vnj

,

which, in view of (5.5), implies that (an) is in �2v. In particular, we then have

|h(z)|2 � �n

|z|2 +
Vn

|z|2
when z is in Dn(v;M) with M sufficiently large. Thus h(z) → 0 when z → ∞, which means
that h ≡ 0.

It remains only to verify that H(Λ,�);(Γ,ν) is a bounded transformation. By Theorem 1.1,
we need to show that we have both supn W

(,0)
n P

(,0)
n < ∞ and supn V

(,0)
n Q

(,0)
n < ∞. To this

end, we note that since �n can only grow sub-exponentially, we have supn W
(,0)
n P

(,0)
n < ∞ by

the same argument that gave supn WnPn < ∞. Since supn VnQn < ∞, we have

V (,0)
n Q(,0)

n �
∑

nj<n

Vnj

�nj

�n

Vn
;

here the right-hand side is uniformly bounded whenever (5.5) holds.
Case 2: Λ is a v-perturbation of Γ of deficiency 1. In view of Lemma 5.7, we have that Λ is

an exact uniqueness sequence for H(Γ,v) if we can show that there is no nonzero a in �2v such
that H(Γ,v)a vanishes on Λ. To show this, we assume to the contrary that such a sequence a
exists. Then there is a constant c such that

∞∑
n=1

anvn

z − γn
=

c

z − γ1

∞∏
m=2

1 − z/λm

1 − z/γm
. (5.22)

By estimating each side of (5.22) for z in Dn(v;M) with M sufficiently large, we get

Vn

∞∑
m=1

|am|2vm � �n.

But this is a contradiction, because (5.6) implies that �n/Vn is an increasing sequence.
It remains only to verify that H(Λ,�);(Γ,ν) is a bounded transformation. To this end, we note

that supn V
(,1)
n Q

(,1)
n < ∞ holds trivially because 1/�n can only grow sub-exponentially, while

W (,1)
n P (,1)

n �
∑

nj<n

Pnj

�nj

�n

Pn
,

which is uniformly bounded when (5.6) holds.
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20. S. V. Hruščev, N. K. Nikol’skǐı and B. S. Pavlov, ‘Unconditional bases of exponentials and of
reproducing kernels’, Complex analysis and spectral theory (eds V. P. Havin and N. K. Nikol‘skǐi), Lecture
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