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Abstract

We prove that for any given integer c > 0 any metric space on n

points may be isometrically embedded into ln−c
∞

provided n is large

enough.

Let (X, ρ) be a metric space on n points. Denote by m(X) the minimal k
such that X may be isometrically embedded in lk

∞
and by m(n) the maximum

value of m(X) for all metric spaces X on n points. Denote also α(X) =
n − m(X), α(n) = n − m(n). It is well known that m(n) ≤ n − 1. For
example, one may fix a point x0 ∈ X and realize the ln−1

∞
as a vector space of

functions on X, which vanish in x0, endorsed with max-norm. Then the map
x → ρ(x, ·) − ρ(x0, ·) defines isometric embedding of X into this space. It is
proved by D. Wolfe that if n ≥ 4, then m(n) ≤ n−2 [5]. Using Ramsey-type
graphs with n vertices without 4-cycles and k-anticliques K. Ball has shown
[3] that m(n) ≥ n − k. He refered to Alon’s [1] explicit construction of such
graphs with k = O(n3/4), while the Spencer’s combinatorial argument [4]
allows us to get k = O(n2/3 · log n), which gives α(n) = O(n2/3 ln n).

Our main result is the following

Theorem 1. lim α(n) = +∞, i.e. that given c > 0, m(n) ≤ n − c for large
enough n.

The idea is to use the well-known observation that if Y ⊂ X, then
m(X) ≤ m(Y ) + |Y \ X|, hence α(X) ≥ α(Y ). Then we may try to find
appropriate subset in X using Ramsey theorem and work with this subset
instead X.

We start with the following technical
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Definition 1. A finite metric space X is called generic, if the distances
between its points are linearly independent over Q.

and the standard

Lemma 1. If m(X) ≤ N for any generic metric space X on n points, then
m(n) ≤ n, i.e. the same inequality holds for any metric space X on n points.

Proof. Fix arbitrary metric space (X, ρ) on n points. Our aim is to prove that
M(X) ≤ N . Fix ε > 0. Change a metric on X by adding to each distance
some number from [ε, 2ε] so that the new metric ρε is generic. It is clearly
possible: just change the distances step by step, and on each step you have
only countably many forbidden changes. Then (X, ρε) may be embedded
isometrically in lN

∞
, without loss of generality a point x0 ∈ X maps to 0.

Then let ε tend to 0, consider the convergent subsequence of embeddings
and its limit is isometric embedding of (X, ρ) in ln−1

∞
.

Hereafter we consider only generic metric spaces.
Assume that X is embedded in lN

∞
. For any i = 1, 2, . . . , N consider the

value of i-th coordinate as a function φi defined on X. Note that φi’s are
1-Lipschitz functions (that is, |φi(x)−φi(y)| ≤ ρ(x, y)), and for any x, y ∈ X
there exists i such that equality |φi(x) − φi(y)| = ρ(x, y) holds. These two
conditions mean nothing but that our map is isometry on X. For any 1-
Lipschitz function f on X define its (oriented) graph, vertices of which are
points of X, and edge a → b is drawn iff f(a)−f(b) = ρ(a, b). Then we realize
that m(X) is the minimal number of graphs of 1-Lipschitz functions on X,
which cover all the edges of complete (non-oriented) graph on X. Recall the
following well-known

Lemma 2. If Y ⊂ X, then any 1-Lipschitz function f on Y may be extended
to 1-Lipschitz function on X

Proof. It suffices to consider the case |X \ Y | = 1, X = Y ∪ {x0} (and then
use induction). Define f(x0) as f(x0) = maxy∈Y (f(y) − ρ(y, x0)). Let this
maximum achieve in z ∈ Y . By definition, f satisfies f(x0)−f(y) ≥ −ρ(y, x0)
for any y ∈ Y . So, to check that f is 1-Lipschitz on X, we need to check
that f(x0) − f(y) ≤ ρ(y, x0) for any y ∈ Y . We have f(x0) − f(y) =
f(z) − f(y) − ρ(z, x0) ≤ ρ(z, y) − ρ(z, x0) ≤ ρ(y, x0) and we are done.
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So, if some graphs of 1-Lipschits functions of Y ⊂ X cover complete graph
on Y , we may extend these functions to X so that they are still 1-Lipschitz
and additionally consider the functions ρ(z, ·) for all z ∈ X \ Y . The graphs
of these functions cover all the edges having at least one endpoint not in Y .
Therefore we get m(X) ≤ m(Y ) + |X \ Y |. hence if we find a subset Y ⊂ X
such that m(Y ) ≤ |Y | − c, then m(X) ≤ |X| − c = n − c aswell.

Let T be a tree on X. Orient its edges so that there is no path of length 2
a → b → c. There are two ways to do it, choose any. Then define a function
on X so that f(a) − f(b) = ρ(a, b) for any edge a → b of our graph. It may
be done uniquely to adding a constant function. Again, choose any. We need
the following straightforward

Lemma 3. If T is a tree such that any two vertices are joined by a path of at
most 4 edges, then such a function is 1-Lipschitz iff for any path a− b−c−d
in a (non-oriented) tree T we have ρ(a, d) + ρ(b, c) ≥ ρ(a, b) + ρ(c, d).

Proof. Consider any x, y ∈ X and check whether |f(x)−f(y)| ≤ ρ(x, y). If x
and y are joined by edge, clearly the equality holds. If they are joined by the
path x−z−y, then |f(x)−f(y)| = |ρ(x, z)−ρ(z, y)| ≤ ρ(x, y), which is still
ok. If they are joined by the path x−z−w−y, then |f(x)−f(y)| = |ρ(x, z)−
ρ(z, w) + ρ(w, y)|. Inequality ρ(x, z) − ρ(z, w) + ρ(w, y) ≥ −ρ(x, y) always
holds and follows from triangle inequality. Inequality ρ(x, z) − ρ(z, w) +
ρ(w, y) ≤ ρ(x, y) is exactly the condition which we require in Lemma. Finally,
if x and y are joined by the path x − z − t − w − y, then f(x) − f(y) =
±(ρ(x, z) − ρ(z, t) + ρ(t, w) − ρ(w, y)). For checking, say, ρ(x, z) − ρ(z, t) +
ρ(t, w) − ρ(w, y) ≤ ρ(x, y) use ρ(x, z) − ρ(z, t) + ρ(t, w) ≤ ρ(x, w), which is
again the requirement of Lemma.

Analogous statement holds for all trees, but here we need only trees of
diameter at most 4.

Now we are ready for applying Ramsey theorem.
It is convenient to think that the points of our space are reals x1 <

x2 < · · · < xn. For any indexes 1 ≤ a < b < c < d ≤ n consider the
four points xa, xb, xc, xd and the following sums: R1 = ρ(xa, xb) + ρ(xc, xd),
R2 = ρ(xa, xc)+ρ(xb, xd), R3 = ρ(xa, xd)+ρ(xb, xc). These sums are different
reals (since X is generic), and there are six possible ways to rearrange them.
So, take six colours labelled by elements of the symmetric group S3 and
colour the quadruple (a, b, c, d) in depend on the arrangement of R1, R2, R3

(for example, colour (a, b, c, d) in color 231, if R2 > R3 > R1).

3



Fix positive integer k and note that if n is large enough, then by Ram-
sey theorem there exist k indexes such that all quadruples formed by these
indexes have the same colour. We call the corresponding subspace of X
monochromatic of corresponding colour.

So, it suffices to consider only monochromatic spaces. Call our space
(X, ρ), |X| = n again, it is now generic and monochromatic.

We have six cases, which correspond to six permutations of 1,2,3. The
first thing which we note is that two of them are impossible if n ≥ 5.

Lemma 4. There are no monochromatic generic metric spaces on 5 points
of colours 213 or 312.

Proof. Assume that (X, ρ) is a generic metric space on 5 points, monochro-
matic of colour 213. Let x1 < x2 < x3 < x4 < x5 be the vertices of X.
Then

ρ(x1, x2) + ρ(x3, x4) > ρ(x1, x4) + ρ(x2, x3)

ρ(x2, x3) + ρ(x4, x5) > ρ(x2, x5) + ρ(x3, x4)

ρ(x1, x4) + ρ(x2, x5) > ρ(x1, x2) + ρ(x4, x5).

Sum up to get a contradiction. The case of colour 312 is analagous, just
change the sign in 3 above inequalities.

Monochromatic spaces of other four colours and arbitrary cardinality do
exist, so we have to consider four cases. We use different approaches in all
the four cases.

But before passing to separate cases, make the following general note
about trees of diameter at most 4, which are graphs of 1-Lipschitz function
(call such trees admissible). Each such tree has a center, some vertices, joined
by edge with a center, which we call main vertices, and other, peripheric,
vertices, each of them is joined with one of main vertices.

Note that if Y ⊂ X and T is admissible tree on Y , then T may be
extended to an admissible tree on X with the same set of main vertices.
Indeed, it suffices to consider X = Y ∪{x0}. Join x0 with such a main vertex
a that ρ(x0, a) − ρ(a, o) takes minimal value (o is center of T ). Moreover,
this expending is unique and so the admissible tree is uniquely determined
by its center and main vertices. Denote the admissible tree with the center
o and admissible vertices a1, a2, . . . , am as T (o; a1, a2, . . . , am).
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Note also that the covering a monochromatic space by graphs of 1-
Lipschitz functions does depend only on the colour of our monochromatic
space and does not depend on metric structure in any other way. So, we
may forget about the metric structure and define a unique monochromatic
structure of given colour on any finite set of reals.

Case 321.

Let’s prove that k trees are enough to cover 321-monochromatic space
X with 2k vertices. Set X = {−k,−(k − 1), . . . ,−1, 1, . . . , k}. For any
i = 1, 2, . . . , k consider the tree T (−i;−k,−(k − 1), . . . ,−i− 1, 1, 2, . . . , i) =
T (i; k, (k − 1), . . . , i + 1,−1,−2, . . . ,−i). It’s straightforward to check that
these trees are admissible and cover X. Note that they all have indeed
diameter 3, not 4.

Case 132.

We use the following

Lemma 5. Let Y be a 132-monochromatic space, |Y | = n and m admissible
trees cover the complete graph on Y without some k edges. Then we may add
2 vertices (i.e. 2 reals) to Y and for new space X add 2 admissible trees so
that now the trees (2 added and extensions of m old) cover complete graph
on X without k − 1 edges.

In other words, we add two additional vertices and two additional trees,
but kill one edge.

Proof. Assume that the edge a − b, a < b, is not covered by our trees. Add
two vertices a + ε, b − ε and two trees T (a; a + ε, b) and T (b; a + ε, b − ε).
The check is straightforward.

Then, using this Lemma, we start with |Y | = c, m = 0 and k = c(c−1)/2.
Apply the Lemma k times and get X such that |X| = c+2k and X is covered
by 2k trees, as desired.

Case 123.

We prove that for given integer c > 0 there exists large N such that the
123-monochromatic space on N vertices may be covered by N − c admissible
trees. It is exactly what we need.

Use induction on c. For c = 0 take N = 1.
Now we show that if N is good for c, then 2N + 3 is good for c + 1.

Take vertices −1, 0, 1, . . . , 2N + 1. Take the trees T (0;−1, 2), T (1; 0, 2) and
T (i + N + 1; i, i + 1) for i = 1, 2, . . . , N . So, we use N + 2 trees and it
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is straightforward that they cover all edges having at least one endpoint in
{−1, 0, 1, . . . , N + 1}. All the other edges may be covered by N − c trees by
induction proposition. So, we use 2N + 2 − c = (2N + 3) − (c + 1) trees to
cover all the edges.

Case 231

We take a 231-monochromatic space on 4n+1 vertices {0, 1, . . . , 4n} and
cover it by 3n trees. It is enough for our purpose for n > c.

For i = 1, 2, . . . , 2n take trees T (0; i, 4n + 1− i). They cover all the edges
except edges a − b for 1 ≤ a ≤ 2n < b ≤ 4n + 1 − a. So, we have to cover
the bipartite graph (with n vertices in each part) formed by such edges by n
trees. Note that the tree T (1; 2n + 1, 2n + 2, . . . , 4n) covers all its edge from
vertices 1, 2n, 2n+1, 4n. After taking this tree we have analogous graph with
n − 1 vertices in each part by n − 1 trees. This is made by repeating this
procedure (or by induction).

So, all the cases are considered and the Theorem 1 is proved.

Remark 1. Another natural question is to study the minimal k(n) such
that any metric space on n point may be embedded in some k-dimensional
Banach space, not necessary in lk

∞
. Clearly, k(n) ≤ m(n), and we do not

know, whether the equality always holds or not. The probably best known
lower bound for k(n) is 2n/3 [2].
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