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Abstract. A special linear Grassmann variety SGr(k, n) is the comple-
ment to the zero section of the determinant of the tautological vector
bundle over Gr(k, n). For a representable ring cohomology theory A(−)
with a special linear orientation and invertible stable Hopf map η, includ-
ing Witt groups and MSLη, we have A(SGr(2, 2n+1)) = A(pt)[e]/

(
e2n
)
,

and A(SGr(2, 2n)) is a truncated polynomial algebra in two variables over
A(pt). A splitting principle for such theories is established. We use the com-
putations for the special linear Grassmann varieties to calculate A(BSLn)
in terms of the homogeneous power series in certain characteristic classes
of the tautological bundle.

1. Introduction.

The basic and most fundamental computation for oriented cohomology the-
ories is the projective bundle theorem (see [Mor1] or [PS, Theorem 3.9]) claim-
ing A(Pn) to be a truncated polynomial ring over A(pt) with an explicit basis
in terms of the powers of a Chern class. Having this result at hand one can
define higher characteristic classes and compute the cohomology of Grass-
mann varieties and flag varieties. In particular, the fact that cohomology of
the full flag variety is a truncated polynomial algebra gives rise to a split-
ting principle, which states that from a viewpoint of an oriented cohomology
theory every vector bundle is in a certain sense a sum of linear bundles. For
a representable cohomology theory one can deal with an infinite dimensional
Grassmannian which is a model for the classifying space BGLn and obtain
even neater answer, the formal power series in the characteristic classes of the
tautological vector bundle.

There are analogous computations for symplectically oriented cohomology
theories [PW1] with appropriately chosen varieties: quaternionic projective
spaces HP n instead of the ordinary ones and quaternionic Grassmannian and
flag varieties. The answers are essentially the same, algebras of truncated
polynomials in characteristic classes.

These computations have a variety of applications, for example theorems
of Conner and Floyd’s type [CF] describing the K-theory and hermitian K-
theory as quotients of certain universal cohomology theories [PPR1, PW4].

In the present paper we establish analogous results for the cohomology the-
ories with special linear orientations. The notion of such orientation was in-
troduced in [PW3, Definition 5.1]. At the same preprint there was constructed
a universal cohomology theory with a special linear orientation, namely the
algebraic special linear cobordismsMSL, [PW3, Definition 4.2]. A more down
to earth example is derived Witt groups defined by Balmer [Bal1] and oriented
via Koszul complexes [Ne2]. A comprehensive survey on the Witt groups could
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be found in [Bal2]. Of course, every oriented cohomology theory admits a spe-
cial linear orientation, but it will turn out that we are not interested in such
examples. We will deal with representable cohomology theories and work in
the unstable H•(k) and stable SH(k) motivic homotopy categories introduced
by Morel and Voevodsky [MV, V]. We recall all the necessary constructions
and notions in sections 2-4 as well as provide preliminary calculations with
special linear orientations.

Then we need to choose an appropriate version of "projective space" anal-
ogous to Pn and HP n. Natural candidates are SLn+1/SLn and An+1 − {0}.
There is no difference which one to choose since the first one is an affine bundle
over the latter one, so they have the same cohomology. We take An+1 − {0}
since it looks prettier from the geometric point of view. There is a calcu-
lation for the Witt groups of this space [BG, Theorem 8.13] claiming that
W ∗(An+1 − {0}) is a free module of rank two over W ∗(pt) with an explicit
basis. The fact that it is a free module of rank two is not surprising since
An+1−{0} is a sphere in the stable homotopy category SH•(k) and W ∗(−) is
representable [Hor]. The interesting part is the basis. Let T = On+1/O(−1)
be the tautological rank n bundle over An+1 − {0}. Then for n = 2k the
basis consists of the element 1 and the class of a Koszul complex. The latter
one is the Euler class e(T ) in the Witt groups. Unfortunately, for the odd n
the second term of the basis looks more complicated. Moreover, for an ori-
ented cohomology theory even in the case of n = 2k the corresponding Chern
class vanishes, so one can not expect that 1 and e(T ) form a basis for every
cohomology theory with a special linear orientation.

Here comes into play the following observation. The maximal compact sub-
group of SLn(R) is SOn(R), so over R the notion of a special linear orientation
of a vector bundle derives to the usual topological orientation of a bundle. The
Euler classes of oriented vector bundles in topology behave themselves well
only after inverting 2 in the coefficients, so we want to invert in the algebraic
setting something analogous to 2. There are two interesting elements in the
stable cohomotopy groups π∗,∗(pt) that go to 2 after taking R-points, a usual
2 ∈ π0,0(pt) and the stable Hopf map η ∈ π−1,−1(pt) arising from the mor-
phism A2−{0} → P1. In general 2 is not invertible in the Witt groups, so we
will invert η. Moreover, recall a theorem due to Morel [Mor2] claiming that for
a perfect field there is an isomorphism ⊕nπn,n(Spec k)[η−1] ∼= W 0(k)[η, η−1],
so in a certain sense η is invertible in the Witt groups. In sections 5-6 we do
some computations justifying the choice of η.

In this paper we deal mainly with the cohomology theories obtained as
follows. Take a commutative monoid (A,m, e : S→ A) in the stable homotopy
category SH(k) and fix a special linear orientation on the cohomology theory
A∗,∗(−). The unit e : S → A of the monoid (A,m, e) induces a morphism of
cohomology theories π∗,∗(−) → A∗,∗(−) making A∗,∗(X) an algebra over the
stable cohomotopy groups. Set η = 1, that is

A∗(X) = A∗,∗(X)/
(
1− η

)
.

It is an easy observation that A∗(−) is still a cohomology theory, see Section 6.
One can regard it as a (1, 1)-periodic cohomology theory A∗,∗η (−) collapsed in
the (1, 1)-direction, where index η stands for the localization by the stable
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Hopf map. For these cohomology theories we have a result analogous to the
case of the Witt groups.

Theorem. There is an isomorphism

A∗(A2n+1 − {0}) ∼= A∗(pt)⊕ A∗−2n(pt)e(T ).

The relative version of this statement is Theorem 3 in section 7. Note that
there is no similar result for A2n − {0}.

In the next section we consider another family of varieties, called special
linear Grassmannians SGr(2, n) = SLn/P

′
2, where P ′2 stands for the derived

group of the parabolic subgroup P2, i.e. P ′2 is the stabilizer of the bivector
e1 ∧ e2 in the exterior square of the regular representation of SLn. There are
tautological bundles T1 and T2 over SGr(2, n) of ranks 2 and n−2 respectively.
We have the following theorem which seems to be the correct version of the
projective bundle theorem for the special linear orientation.

Theorem. For the special linear Grassmann varieties we have the next iso-
morphisms.

A∗(SGr(2, 2n)) ∼=
2n−2⊕
i=0

A∗−2i(pt)e(T1)i ⊕ A∗−2n+2(pt)e(T2),

A∗(SGr(2, 2n+ 1)) ∼=
2n−1⊕
i=0

A∗−2i(pt)e(T1)i.

Recall that there is a recent computation of the twisted Witt groups of Grass-
mannians [BC]. The twisted groups are involved since the authors use push-
forwards that exist only in the twisted case. We deal with the varieties with a
trivialized canonical bundle and closed embeddings with a special linear nor-
mal bundle in order to avoid these difficulties. In fact we are interested in the
relative computations that could be extended to the Grassmannian bundles,
so we look for a basis consisting of characteristic classes rather then push-
forwards of certain elements. It turns out that such bases exist only for the
special linear flag varieties with all but at most one dimension step being even,
i.e. we can handle SGr(1, 7), SF(2, 4, 6) and SF(2, 5, 7) but not SGr(3, 6).
Nevertheless it seems that one can construct the basis for the latter case in
terms of pushforwards.

Sections 8 and 9 are devoted to the computations of the cohomology rings
of partial flag varieties. We obtain an analogue of the splitting principle in
Theorem 6 and derive certain properties of the characteristic classes. In par-
ticular, there is a complete description of the cohomology rings of maximal
SL2 flag varieties,

SF(2n) = SL2n/P
′
2,4,...,2n−2, SF(2n+ 1) = SL2n+1/P

′
2,4,...,2n.

The result looks as follows (see Remark 9).

Theorem. For n ≥ 1 consider

si = σi(e
2
1, e

2
2, ..., e

2
n), t = σn(e1, e2, . . . , en)

with σi being the elementary symmetric polynomials in n variables. Then we
have the following isomorphisms
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(1) A∗(SF(2n)) ∼= A∗(pt)[e1, e2, ..., en]
/(
s1, s2, . . . , sn−1, t

)
,

(2) A∗(SF(2n+ 1)) ∼= A∗(pt)[e1, e2, ..., en]
/(
s1, s2, . . . , sn

)
.

Note that one can substitute the SLn/(SL2)[n/2] instead of SF(n). These
answers and the choice of commuting SL2 in SLn perfectly agree with our
principle that SLn(R) stands for SOn(R), since SL2(R) stands for the compact
torus S1, and the choice of maximal number of commuting SL2 is parallel to
the choice of the maximal compact torus. We get the coinvariants for the Weyl
groupsW (Bn) andW (Dn) and it is what one gets computing the cohomology
of SOn(R)/T . Section 11 deals withW (Bn) andW (Dn)-invariant polynomials
and certain spanning sets over the symmetric polynomials are constructed.

In section 12 we carry out a computation for the cohomology rings of the
special linear Grassmannians SGr(m,n) with at least one of the integers
m,n−m being even, see Theorem 9. The answer is a truncated polynomial al-
gebra in certain characteristic classes. At the end we assemble the calculations
for the special linear Grassmannians and compute in Theorem 10 the coho-
mology of the classifying spaces in terms of the homogeneous formal power
series.

Theorem. We have the following isomorphisms.

A∗(BSL2n) ∼= A∗(pt) [[b1, . . . , bn−1, e]]h ,

A∗(BSL2n+1) ∼= A∗(pt) [[b1, . . . , bn]]h .

Finally, we leave for the forthcoming paper [An] the careful proof of the fact
that Witt groups arise from the hermitian K-theory in the described above
fashion, that is W ∗(X) ∼= BO∗,∗(X)/

(
1 − η

)
. In the same paper we obtain

the following special linear version of the motivic Conner and Floyd theorem.

Theorem. Let k be a field of characteristic different from 2. Then for every
smooth variety X over k there exists an isomorphism

MSL∗,∗(X)/
(
1− η

)
⊗MSL4∗,2∗(pt) W

2∗(pt) ∼= W ∗(X).

Another application of the developed technique lies in the field of the equi-
variant Witt groups and we are going to address it in another paper.

Acknowledgement. The author wishes to express his sincere gratitude to
I. Panin for the introduction to the beautiful world of A1-homotopy theory
and numerous discussions on the subject of this paper. This research is sup-
ported by RFBR grants 10-01-00551-a and 12-01-31100 and by the Chebyshev
Laboratory (Department of Mathematics and Mechanics, St. Petersburg State
University) under RF Government grant 11.G34.31.0026.

2. Preliminaries on SH(k) and ring cohomology theories.

Let k be a field of characteristic different from 2 and let Sm/k be the
category of smooth varieties over k.

A motivic space over k is a simplicial presheaf on Sm/k. Each X ∈ Sm/k
defines an unpointed motivic space HomSm/k(−, X) constant in the simplicial
direction. We will often write pt for the Spec k regarded as a motivic space.
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We use the injective model structure on the category of the pointed motivic
spaces M•(k). Inverting the weak motivic equivalences in M•(k) gives the
pointed motivic unstable homotopy category H•(k).

Let T = A1/(A1 − {0}) be the Morel-Voevodsky object. A T -spectrum
M [Jar] is a sequence of pointed motivic spaces (M0,M1,M2, . . . ) equipped
with the structural maps σn : T ∧ Mn → Mn+1. A map of T -spectra is a
sequence of maps of pointed motivic spaces which is compatible with the
structure maps. We write MS(k) for the category of T -spectra. Inverting the
stable motivic weak equivalences as in [Jar] gives the motivic stable homotopy
category SH(k).

A pointed motivic space X gives rise to a suspension T -spectrum Σ∞T X. Set
S = Σ∞T (pt+) for the spherical spectrum. Both H•(k) and SH(k) are equipped
with symmetric monoidal structures (∧, pt+) and (∧,S) respectively and

Σ∞T : H•(k)→ SH(k)

is a strict symmetric monoidal functor.
Recall that there are two spheres in M•(k), the simplicial one S1,0 = S1

s =
∆1/∂(∆1) and S1,1 = (Gm, 1). For the integers p, q ≥ 0 we write Sp+q,q for
(Gm, 1)∧q∧(S1

s )
∧p and Σp+q,q for the suspension functor−∧Sp+q,q. This functor

becomes invertible in the stable homotopy category SH(k), so we extend the
notation to arbitrary integers p, q in an obvious way.

Any T -spectrum A defines a bigraded cohomology theory on the category
of pointed motivic spaces. Namely, for a pointed space (X, x) one sets

Ap,q(X, x) = HomSH(k)(Σ
∞(X, x),Σp,qA)

and A∗,∗(X, x) =
⊕

p,q A
p,q(X, x). In case of i − j, j ≥ 0 one has a canoni-

cal suspension isomorphism Ap,q(X, x) ∼= Ap+i,q+j(Σi,j(X, x)) induced by the
shuffling isomorphism Sp,q∧Si,j ∼= Sp+i,q+j. In the motivic homotopy category
there is a canonical isomorphism T ∼= S2,1, we write

ΣT : A∗,∗(X)
'−→ A∗+2,∗+1(X ∧ T )

for the corresponding suspension isomorphism. See definition 15 in Section 5
for the details.

For an unpointed space X we set Ap,q(X) = Ap,q(X+,+) with A∗,∗(X)
defined accordingly. Set πi,j(X) = Si,j(X) to be the stable cohomotopy groups
of X.

We can regard smooth varieties as unpointed motivic spaces and obtain
the groups Ap,q(X). Given a closed embedding i : Z → X of varieties we write
Th(i) for X/(X − Z). For a vector bundle E → X set Th(E) = E/(E −X)
to be the Thom space of E.

A commutative ring T -spectrum is a commutative monoid (A,m, e) in
(SH(k),∧,S). The cohomology theory defined by a commutative T -spectrum
is a ring cohomology theory satisfying a certain bigraded commutativity con-
dition described by Morel.

We recall the essential properties of the cohomology theories represented
by a commutative ring T -spectrum A.
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(1) Localization: for a closed embedding of varieties i : Z → X with a
smooth X and an open complement j : U → X we have a long exact sequence

. . .
∂−→ A∗,∗(Th(i))

zA−→ A∗,∗(X)
jA−→ A∗,∗(U)

∂−→ A∗+1,∗(Th(i))
zA−→ . . .

It is a special case of the cofiber long exact sequence.
(2) Nisnevich excision: consider a Cartesian square of smooth varieties

Z ′
i′ //

f ′

��

X ′

f

��
Z

i // X

where i is a closed embedding, f is etale and f ′ is an isomorphism. Then
for the induced morphism g : Th(i′) → Th(i) the corresponding morphism
gA : A∗,∗(Th(i)) → A∗,∗(Th(i′)) is an isomorphism. It follows from the fact
that g is an isomorphism in the homotopy category.

(3) Homotopy invariance: for an An-bundle p : E → X over a variety X the
induced homomorphism pA : A∗,∗(X)→ A∗,∗(E) is an isomorphism.

(4) Mayer-Vietoris: if X = U1 ∪ U2 is a union of two open subsets U1 and
U2 then there is a natural long exact sequence

. . .→ A∗,∗(X)→ A∗,∗(U1)⊕ A∗,∗(U2)→ A∗,∗(U1 ∩ U2)→ A∗+1,∗(X)→ . . .

(5) Cup-product: for a motivic space Y we have a functorial graded ring
structure

∪ : A∗,∗(Y )× A∗,∗(Y )→ A∗,∗(Y ).

Moreover, let i1 : Z1 → X and i2 : Z2 → X be closed embeddings and put
i12 : Z1 ∩ Z2 → X. Then we have functorial, bilinear and associative cup-
product

∪ : A∗,∗(Th(i1))× A∗,∗(Th(i2))→ A∗,∗(Th(i12)).

In particular, setting Z1 = X we obtain an A∗,∗(X)-module structure on
A∗,∗(Th(i2)). All the morphisms in the localization sequence are homomor-
phisms of A∗,∗(X)-modules.

We will sometimes omit ∪ from the notation.
(6)Module structure over stable cohomotopy groups: for every motivic space

Y we have a homomorphism of graded rings π∗,∗(Y ) → A∗,∗(Y ), which de-
fines a π∗,∗(pt)-module structure on A∗,∗(Y ). For a smooth variety X the ring
A∗,∗(X) is a graded π∗,∗(pt)-algebra via π∗,∗(pt)→ π∗,∗(X)→ A∗,∗(X).

(7) Graded ε-commutativity [Mor1]: let ε ∈ π0,0(pt) be the element corre-
sponding under the suspension isomorphism to the morphism T → T, x 7→
−x. Then for every motivic space X and a ∈ Ai,j(X), b ∈ Ap,q(X) we have

ab = (−1)ipεjqba.

Recall that ε2 = 1.

3. Special linear orientation.

In this section we recall the notion of a special linear orientation introduced
in [PW3] and establish some of its basic properties.
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Definition 1. A special linear bundle over a variety X is a pair (E, λ) with
E → X a vector bundle and λ : detE

'−→ OX an isomorphism of line bundles.
An isomorphism φ : (E, λ)

'−→ (E ′, λ′) of special linear vector bundles is an
isomorphism φ : E

'−→ E ′ of vector bundles such that λ′ ◦ (detφ) = λ. For a
special linear bundle T = (E, λ) we usually denote by the same letter T the
total space of the bundle E.

Definition 2. Consider a trivialized rankn bundle OnX over a smooth variety
X. There is a canonical trivialization detOnX

'−→ OX . We denote the corre-
sponding special linear bundle by (OnX , 1) and refer to it as the trivialized
special linear bundle.

Lemma 1. Let (E, λ) be a special linear bundle over a smooth variety X such
that E ∼= OnX . Then there exists an isomorphism of special linear bundles

φ : (E, λ)
'−→ (OnX , 1).

Proof. An exact sequence of algebraic groups

1→ SLn → GLn
det−→ Gm → 1

induces an exact sequence of pointed sets

H0(X,GLn)
p−→ H0(X,Gm)→ H1(X, SLn)

i−→ H1(X,GLn)

There is a splitting Gm → GLn for det, so p is surjective. Hence we have
ker i = {∗} and this means that, up to an isomorphism of special linear
bundles, there exists only one trivialization λ : detOnX → OX . �

Lemma 2. Let E1 be a subbundle of a vector bundle E over a smooth variety
X. Then there are canonical isomorphisms

(1) detE1 ⊗ det(E/E1) ∼= detE,
(2) detE∨ ∼= (detE)∨.

Proof. These isomorphisms are induced by the corresponding vector space
isomorphisms. In the first case we have ΛmV1 ⊗ Λn(V/V1)

'−→ Λm+nV with
v1 ∧ . . . ∧ vm ⊗ w1 ∧ . . . ∧ wn 7→ v1 ∧ . . . ∧ vm ∧ w1 ∧ . . . ∧ wn.

For the second isomorphism consider the perfect pairing
φ : ΛnV × ΛnV ∨ → k

defined by

φ(v1 ∧ . . . ∧ vn, f1 ∧ . . . ∧ fn) =
∑
σ∈Sn

sign(σ)fσ(1)(v1) · . . . · fσ(n)(vn). �

Definition 3. Let T = (E, λE) be a special linear bundle over a smooth
variety X and let T ′ = (E ′, λE′) with E ′ ≤ E be a special linear sub-
bundle. By Lemma 2 we have canonical trivializations λE∨ : detE∨

'−→ OX
and λE/E′ : det(E/E ′)

'−→ OX . The special linear bundle T ∨ = (E∨, λE∨) is
called the dual special linear bundle and the special linear bundle T /T ′ =
(E/E ′, λE/E′) is called the quotient special linear bundle. For a pair T1 =
(E1, λE1), T2 = (E2, λE2) of special linear bundles over a smooth variety X we
put T1⊕T2 = (E1⊕E2, λE1 ⊗ λE2) and refer to it as the direct sum of special
linear bundles.



8 ALEXEY ANANYEVSKIY

Definition 4. Let A∗,∗(−) be a cohomology theory represented by a T -
spectrum A. A (normalized) special linear orientation on A∗,∗(−) is a rule
which assigns to every special linear bundle T of rank n over a smooth vari-
ety X a class th(T ) ∈ A2n,n(Th(T )) satisfying the following conditions [PW3,
Definition 5.1]:

(1) For an isomorphism f : T '−→ T ′ we have th(T ) = fAth(T ′).
(2) For a morphism r : Y → X we have rAth(T ) = th(r∗T ).
(3) The maps −∪th(T ) : A∗,∗(X)→ A∗+2n,∗+n(Th(T )) are isomorphisms.
(4) We have

th(T1 ⊕ T2) = qA1 th(T1) ∪ qA2 th(T2),

where q1, q2 are projections from T1⊕T2 onto its summands. Moreover,
for the zero bundle 0→ pt we have th(0) = 1 ∈ A0,0(pt).

(5) (normalization) For the trivialized line bundle over a point we have
th(Opt, 1) = ΣT1 ∈ A2,1(T ).

The isomorphism −∪ th(T ) is the Thom isomorphism. The class th(T ) is the
Thom class of the special linear bundle, and

e(T ) = zAth(T ) ∈ A2n,n(X)

with natural z : X → Th(T ) is its Euler class.

Lemma 3. Let T be a special linear bundle over a smooth variety X and let
T1 ≤ T be a special linear subbundle. Then e(T ) = e(T1)e(T /T1).

Proof. There is an Ar-bundle p : Y → X such that

p∗T ∼= p∗T1 ⊕ p∗(T /T1),

so the claim follows from the homotopy invariance and the multiplicativity
of the Euler class with respect to the direct sums. The variety Y could be
constructed in the following way. The fiber over a point x ∈ X consists of the
vector subspaces E|x ≤ T |x such that T |x = T1|x ⊕ E|x. This construction
could be performed locally and then glued into the variety Y . �

Remark 1. For a rank 2n special linear bundle T over a variety X we have
th(T ) ∈ A4n,2n(Th(T )) and e(T ) ∈ A4n,2n(X), so this classes are universally
central.

Recall that a symplectic bundle is a special linear bundle in a natural way,
so having a special linear orientation we have the Thom classes also for sym-
plectic bundles, thus a cohomology theory with a special linear orientation is
also symplectically oriented. We recall the definition of the Pontryagin classes
theory [PW1, Definition 14.1] that could be developed for a symplectically
orientated cohomology theory.

Definition 5. Let A∗,∗(−) be a cohomology theory represented by a T -
spectrum A. A Pontryagin classes theory on A∗,∗(−) is a rule which assigns
to every symplectic bundle (E, φ) over every smooth variety X a system of
Pontryagin classes pi(E, φ) ∈ A4i,2i(X) for all i ≥ 1 satisfying

(1) For (E1, φ1) ∼= (E2, φ2) we have pi(E1, φ1) = pi(E2, φ2) for all i.
(2) For a morphism r : Y → X and a symplectic bundle (E, φ) over X we

have rA(pi(E, φ)) = pi(r
∗(E, φ)) for all i.
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(3) For the tautological rank 2 symplectic bundle (E, φ) over

HP 1 = Sp4/(Sp2 × Sp2)

the elements 1, p1(E, φ) form an A∗,∗(pt)-basis of A∗,∗(HP 1).
(4) For a rank 2 symplectic bundle (V, φ) over pt we have p1(V, φ) = 0.
(5) For an orthogonal direct sum of symplectic bundles (E, φ) ∼= (E1, φ1) ⊥

(E2, φ2) we have

pi(E, φ) = pi(E1, φ1) +
i−1∑
j=1

pi−j(E1, φ1)pj(E2, φ2) + pi(E2, φ2)

for all i.
(6) For (E, φ) of rank 2r we have pi(E, φ) = 0 for i > r.

We set p∗(E, φ) = 1 +
∑∞

j=1 pi(E, φ)ti to be the total Pontryagin class.

Every oriented cohomology theory possesses a special linear orientation
via th(E, λ) = th(E), so one can consider K-theory or algebraic cobordism
represented byMGL as examples. We have two main instances of the theories
with a special linear orientation but without a general one. The first one
is hermitian K-theory [Sch] represented by the spectrum BO [PW2]. The
special linear orientation on BO∗,∗ via Koszul complexes could be found in
[PW2]. The second one is universal in the sense of [PW3, Theorem 5.9] and
represented by the algebraic special linear cobordism spectrum MSL [PW3,
Definition 4.2].

Definition 6. From now on A∗,∗(−) is a ring cohomology theory represented
by a commutative monoid in SH(k) with a fixed special linear orientation.

Lemma 4. For a smooth variety X we have

th(OnX , 1) = Σn
T1, th(OX ,−1) = ΣT ε.

Proof. It follows immediately from the conditions (4) and (5) and functoriality.
�

Lemma 5. Let (E, λE) be a special linear bundle over a smooth variety X.
Then

e(E, λE) = ε ∪ e(E,−λE).

Proof. Consider the bundle E⊕OX and denote the projections onto the sum-
mands by q1, q2. We have

(E ⊕OX , λE ⊗ 1) = (E ⊕OX , (−λE)⊗−1),

hence
q∗1th(E, λE) ∪ q∗2Σ1 = q∗1th(E,−λE) ∪ q∗2Σε.

By the suspension isomorphism we obtain

th(E, λE) = th(E,−λE) ∪ ε,
hence e(E, λE) = ε ∪ e(E,−λE). �

Lemma 6. Let T be a rank 2 special linear bundle over a smooth variety X.
Then T ∼= T ∨ and e(T ) = e(T ∨).
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Proof. Set T = (E, λE). The trivialization λE : Λ2E
'−→ OX defines a sym-

plectic form on E and an isomorphism φ : E
'−→ E∨, thus it is sufficient to

check that
λE∨ ◦ detφ = λE.

It could be checked locally, so we can suppose that E ∼= O2
X and, in view of

Lemma 1, (E, λE) ∼= (O2
X , 1). Fixing a basis {e1, e2} such that e1∧ e2 = 1 and

taking the dual basis {e∨1 , e∨2 } for (O2
X)∨ we have

φ(e1) = (e1 ∧ −) = e∨2 , φ(e2) = (e2 ∧ −) = −e∨1 .
Thus we obtain

detφ(e1 ∧ e2) = e∨2 ∧ (−e∨1 ) = e∨1 ∧ e∨2
and

λE∨ detφ(e1 ∧ e2) = λE∨(e∨1 ∧ e∨2 ) = 1. �

Definition 7. For a vector bundle E we denote by E0 the complement to the
zero section. For a special linear bundle T = (E, λ) we set T 0 = E0.

Definition 8. Let T be a rank n special linear bundle over a smooth variety
X. The Gysin sequence is a long exact sequence

. . .
∂−→ A∗−2n,∗−n(X)

∪e(T )−−−→ A∗,∗(X)→ A∗,∗(T 0)
∂−→ A∗−2n+1,∗−n(X)→ . . .

obtained from the localization sequence for the zero section X → T via the
homotopy invariance and the Thom isomorphism.

Lemma 7. Let (E, λE) be a special linear bundle over a smooth variety X.
(1) Let λ′E be any other trivialization of detE. Then one has

A0,0(X) ∪ e(E, λE) = A0,0(X) ∪ e(E, λ′E).

(2) For the dual special linear bundle (E∨, λE∨) one has

A0,0(X) ∪ e(E, λE) = A0,0(X) ∪ e(E∨, λE∨).

Proof. Set n = rankE and denote the projections E0 → X and E∨0 → X by
p and p′ respectively.

(1) Consider the Gysin sequences corresponding to the trivializations λE
and λ′E.

. . . // A0,0(X)
∪e(E,λE)

// A2n,n(X)
pA //

=

��

A2n,n(E0)

=

��

// . . .

. . . // A0,0(X)
∪e(E,λ′E)

// A2n,n(X)
pA // A2n,n(E0) // . . .

We have
A0,0(X) ∪ e(E, λE) = ker pA = A0,0(X) ∪ e(E, λ′E).

(2) Consider
Y = {(v, f) ∈ E ×X E∨ | f(v) = 1} .

Projections p1 : Y → E0 and p2 : Y → E∨0 have fibres isomorphic to
An−1, thus

A∗,∗(E0) ∼= A∗,∗(Y ) ∼= A∗,∗(E∨0)
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and we have a canonical isomorphism A∗,∗(E0) ∼= A∗,∗(E∨0) over
A∗,∗(X). Now proceed as in the first part and consider the Gysin se-
quences.

. . . // A0,0(X)
∪e(E,λE)

// A2n,n(X)
pA //

=

��

A2n,n(E0)

∼=
��

// . . .

. . . // A0,0(X)
∪e(E∨,λE∨ )

// A2n,n(X)
p′A // A2n,n(E∨0) // . . .

We have

A0,0(X) ∪ e(E, λE) = ker pA = ker p′A = A0,0(X) ∪ e(E∨, λE∨). �

Lemma 8. Let T be a special linear bundle over a smooth variety X such
that there exists a nowhere vanishing section s : X → T . Then e(T ) = 0.

Proof. Set rank T = n and consider the Gysin sequence

. . .→ A0,0(X)
∪e(T )−−−→ A2n,n(X)

jA−→ A2n,n(T 0)→ . . .

The section s induces a splitting sA for jA, thus jA is injective and

e(T ) = 1 ∪ e(T ) = 0. �

4. Pushforwards along closed embeddings.

In this section we give the construction of the pushforwards along the closed
embeddings with special linear normal bundles for a cohomology theory with
a special linear orientation. It is quite similar to the construction of such push-
forwards for oriented [PS, Ne1] or symplectically oriented [PW1] cohomology
theories and twisted Witt groups [Ne2], so we follow loc. cit. adapting it to
the special linear context.

Definition 9. Let i : Z → X be a closed embedding of smooth varieties. The
deformation space D(Z,X) is obtained as follows.

(1) Consider X × A1.
(2) Blow-up it along Z × 0.
(3) Remove the blow-up of X × 0 along Z × 0.

This construction produces a smooth variety D(Z,X) over A1. The fiber over
0 is canonically isomorphic to Ni while the fiber over 1 is isomorphic to X
and we have the corresponding closed embeddings i0 : Ni → D(Z,X) and
i1 : X → D(Z,X). There is a closed embedding z : Z × A1 → D(Z,X) such
that over 0 it coincides with the zero section s : Z → Ni of the normal bundle
and over 1 it coincides with the closed embedding i : Z → X. At last, we have
a projection p : D(Z,X)→ X.

Thus we have homomorphisms of A∗,∗(X)-modules (via pA)

A∗,∗(Th(Ni)) A∗,∗(Th(z))
iA0oo

iA1 // A∗,∗(Th(i)).

These homomorphisms are isomorphisms since in the homotopy category
H•(k) we have isomorphisms i0 : Th(Ni) ∼= Th(z) and i1 : Th(i) ∼= Th(z)
[MV, Theorem 2.23]. We set

dAi = iA1 ◦ (iA0 )−1 : A∗,∗(Th(Ni))→ A∗,∗(Th(i))
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to be the deformation to the normal bundle isomorphism. The functoriality of
the deformation space D(Z,X) makes the deformation to the normal bundle
isomorphism functorial.

Definition 10. For a closed embedding i : Z → X of smooth varieties a
special linear normal bundle is a pair (Ni, λ) with Ni the normal bundle and
λ : detNi

'−→ OZ an isomorphism of line bundles.

Definition 11. Let i : Z → X be a closed embedding of smooth varieties with
a rank n special linear normal bundle (Ni, λ). Denote by ı̃A the composition
of the Thom and deformation to the normal bundle isomorphisms,

ı̃A = dAi ◦ (− ∪ th(Ni, λ)) : A∗,∗(Z)
'−→ A∗+2n,∗+n(Th(i)).

For the inclusion z : X → Th(i) the composition

iA = zA ◦ ı̃A : A∗,∗(Z)→ A∗+2n,∗+n(X)

is the pushforward map. Note that in general iA depends on the trivialization
of detNi.

Remark 2. We have an analogous definition of the pushforward map for a
closed embedding i : Z → X in every cohomology theory possessing a Thom
class for the normal bundle Ni. In particular, we have pushforwards in the
stable cohomotopy groups for closed embeddings with a trivialized normal
bundle (Ni, θ), where θ : Ni

'−→ OnZ is an isomorphism of vector bundles, since
there is a Thom class th(OnZ) = Σn

T1 and suspension isomorphism

(− ∪ Σn
T1) : π∗,∗(Z)

'−→ π∗+2n,∗+n(Th(OnZ)).

Definition 12. Let i : Z → X be a closed embedding of smooth varieties with
a rank n special linear normal bundle. Then using the notation of pushforward
maps the localization sequence boils down to

. . .
∂−→ A∗−2n,∗−n(Z)

iA−→ A∗,∗(X)
jA−→ A∗,∗(X − Z)

∂−→ A∗−2n+1,∗−n(Z)
iA−→ . . .

We refer to this sequence as the Gysin sequence, similar to Definition 8.

In the rest of this section we sketch some properties of the pushforward
maps. The next lemma is similar to [PW1, Proposition 7.4].

Lemma 9. Consider the following pullback diagram with all the involved va-
rieties being smooth.

X ′ = X ×Y Y ′
i′ //

g′

��

Y ′

g

��
X

i // Y

Let i, i′ be closed embeddings with special linear normal bundles (Ni, λ) and
let (Ni′ , λ

′) ∼= (g′∗Ni, g
′∗λ). Then we have gAı̃A = ı̃′g′A.

Proof. It follows from the functoriality of the deformation to the normal bun-
dle and the functoriality of Thom classes. �

The next proposition is an analogue of [PW1, Proposition 7.6].
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Proposition 1. Let T be a special linear bundle over a smooth variety X
with a section s : X → T meeting the zero section r transversally in Y . Then
for the inclusion i : Y → X and every b ∈ A∗,∗(X) we have

iAi
A(b) = b ∪ e(T ).

Proof. Let zA : A∗,∗(Th(i)) → A∗,∗(X) and zA : A∗,∗(Th(T )) → A∗,∗(T ) be
the extension of supports maps and let p : T → X be the structure map for
the bundle. Consider the following diagram.

A∗,∗(X)
r̃A

∪th(T )
//

iA

��

A∗,∗(Th(T ))
zA //

sA

��

A∗,∗(T )

sA

��
rA

��
A∗,∗(Y )

ı̃A // A∗,∗(Th(i))
zA // A∗,∗(X)

pA

^^

The pullbacks along the two section of p are inverses of the same isomor-
phism pA, so sA = rA. The right-hand square consists of pullbacks thus it is
commutative. The left-hand square commutes by Lemma 9. Hence we have

iAi
A(b) = zAı̃Ai

A(b) = rAzA(b ∪ th(T )) = b ∪ e(T ). �

The pushforward maps are compatible with the compositions of the closed
embeddings. The following proposition is similar to [Ne2, Proposition 5.1] and
the same reasoning works out, so we omit the proof.

Proposition 2. Let Z i−→ Y
j−→ X be closed embeddings of smooth varieties

with special linear normal bundles (Nji, λji), (Ni, λi), (i
∗Nji/Ni, λj) such that

λi ⊗ λj = λji. Then
jAiA = (ji)A.

5. Preliminary computations in the stable cohomotopy groups
and the stable Hopf map.

We are going to do preliminary computations involving π∗,∗ and various
motivic spheres. The main result of this section is Proposition 3 proved by
a rather lengthy computation. We track down all the involved canonical iso-
morphisms, so the formulas are a bit messy.

Throughout this section we use X = An+1 − {0} for a punctured affine
space with n ≥ 1. Let x = (1, 1, 0, . . . , 0) be a point on X. First of all recall
the following well-known isomorphisms [MV, Lemma 2.15, Example 2.20].

Definition 13. Set σ = σ−1
2 σ1 : (X, x)

'−→ (Gm, 1) ∧ T∧n for the canonical
isomorphism in the homotopy category. It is defined via

(X, x)
σ1−→ X/((A1 × (An − {0})) ∪ ({1} × An))

σ2←− (Gm, 1) ∧ T∧n,
where σ1 is induced by the identity map on X and σ2 is induced by the
natural embedding Gm × An ⊂ X. Recall that σ1 is an isomorphism since
(A1 × (An − {0}))∪ ({1} ×An) is A1-contractible, while σ2 is induced by the
excision isomorphism (Gm+,+)∧ T∧n ∼= X/(X − (A1 × {(0, 0, . . . , 0)})), so it
is an isomorphism as well.

We write s = s−1
2 s1 : (A2 − {0}, (1, 1))

'−→ (Gm, 1) ∧ T for this isomorphism
in the particular case of n = 1.
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Another isomorphism that we need could be easily expressed via the cone
construction.

Definition 14. Let i : Y → Z be a morphism of motivic spaces. The space
Cone(i) defined via the cocartesian square

Y
i //

in1

��

Z

��

Y ∧∆1 // Cone(i)

is called the cone of the morphism i.

Definition 15. Set ρ = ρ2 ◦ ρ−1
1 : T

'−→ (Gm, 1) ∧ S1
s = S2,1 for the canonical

isomorphism in the homotopy category defined via

T
ρ1←− Cone(iρ)

ρ2−→ (Gm, 1) ∧ S1
s

where iρ stands for the natural embedding Gm → A1 and the isomorphisms
ρ1 and ρ2 and induced by the maps ∆1 → pt and A1 → pt respectively.

Definition 16. For every pointed motivic space Y put

ΣT = (idY ∧ ρ)πΣ2,1 : π∗,∗(Y )→ π∗+2,∗+1(Y ∧ T )

and set Σn
T = ΣT ◦ ΣT ◦ . . . ◦ ΣT for the n-fold composition.

Consider the localization sequence for the embedding {0} → An+1,

. . .→ π2n,n(T∧n+1)→ π2n,n(An+1)→ π2n,n(X)
∂−→ π2n+1,n(T∧n+1)→ . . .

Canonical isomorphisms described above together with the choice of the point
x on X provide a splitting for the connecting homomorphism ∂. We discuss
it in the next lemma. Put

τ : T∧n ∧ (Gm, 1)→ (Gm, 1) ∧ T∧n, τc : T∧n ∧ T → T ∧ T∧n

for the twisting isomorphisms defined via (x0, x1, . . . , xn) 7→ (xn, x0, . . . , xn−1).

Lemma 10. For the canonical morphism r : (X+,+)→ (X, x) we have

∂rπ = (τπc )−1(id ∧ ρ)πΣ1,0τπ(σπ)−1.

Proof. On the right-hand side we have

(τπc )−1(id ∧ ρ)πΣ1,0τπ(σπ)−1 = (τπc )−1(id ∧ ρ)π(σ−1τ ∧ id)πΣ1,0 =

= ((σ−1τ ∧ id)(id ∧ ρ)τ−1
c )πΣ1,0.

Put Y = (A1 × (An − {0})) ∪ ({1} × An). Let iY : (X/Y ) → (An+1/Y ),
iG : T∧n∧(Gm, 1)→ T∧n∧(A1, 1) and i+ : (X+,+)→ (An+1

+ ,+) be the natural
embeddings and let j1 : (An+1

+ ,+)→ Cone(i+) and j2 : Cone(i+)→ Cone(j1)
be the canonical maps for the cone construction.
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Consider the following diagram.

T∧n ∧ (Gm, 1) ∧ S1
s

τ∧id '
��

T∧n ∧ Cone(iρ)
id∧ρ2
'

oo id∧ρ1
'

//

w '
��

T∧(n+1)
τc

'
// T∧(n+1)

(Gm, 1) ∧ T∧n ∧ S1
s

σ2∧id '
��

Cone(iG)

t '
��

(X/Y ) ∧ S1
s Cone(iY )

ψ3

'

66nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
u

'
oo Cone(i+)

j2
��

' ψ1

OO

v

'
oo

(X, x) ∧ S1
s

σ1∧id '

OO

(X+,+) ∧ S1
s

r∧idoo Cone(j1)
ψ2

'
oo

Here ψ1, ψ2 and ψ3 are induced by ∆1 → pt, v is induced by An+1 → An+1/Y
and X+ → X/Y , u is induced by An+1/Y → pt, w is an obvious isomorphism
T∧n ∧ Cone(iρ) ∼= Cone(id ∧ iρ) and t is induced by τ . One can easily verify
that the diagram is commutative. By the very definition we have

∂rπ = (ψ2j2ψ
−1
1 )πΣ1,0rπ = ((r ∧ id)ψ2j2ψ

−1
1 )πΣ1,0,

thus it is sufficient to show

(r ∧ id)ψ2j2ψ
−1
1 = (σ−1τ ∧ id)(id ∧ ρ)τ−1

c

and it follows from the commutativity of the above diagram. �

Definition 17. The Hopf map is the canonical morphism of pointed motivic
spaces

H : (A2 − {0}, (1, 1))→ (P1, [1 : 1])

defined via H(x, y) = [x, y]. Let u : T → P1/A1 be the canonical isomorphism
defined via u(x) = [x : 1]. Then the stable Hopf map is the unique element
η ∈ π−1,−1(pt) such that sπΣTΣ1,1η = Σ∞T (ρu−1H), i.e. η is the stabilization
of H moved to π−1,−1(pt) via the canonical isomorphisms.

Lemma 11. Let H̃ : (A2 − {0}, (1, 1)) → (P1, [1 : 1]) be the morphism of
pointed motivic spaces defined via H̃(x, y) = [y : x] and let η̃ ∈ π−1,−1(pt) be
the unique element such that sπΣTΣ1,1η̃ = Σ∞(ρu−1H̃). Then η̃ = ε ∪ η.

Proof. Let φ : (A2 − {0}, (1, 1)) → (A2 − {0}, (1, 1)) be the reflection defined
via φ(x, y) = (y, x). Put Y = (A1 ∧ (A2−{0}))∪ ({1}×A2) and consider the
following commutative diagram.

(A2 − {0}, (1, 1)) ∧ T
φ∧−idT//

ψ2 '
��

(A2 − {0}, (1, 1)) ∧ T

ψ2 '
��

(A3 − {0})/Y
ψ3

'
// (A3 − {0})/Y

(Gm, 1) ∧ T ∧ T
id∧(−idT∧T )

//

ψ1 '

OO

(Gm, 1) ∧ T ∧ T

ψ1 '

OO

Here ψ1 is induced by the inclusion Gm × A2 → A3 − {0}, ψ2 is given by
ψ2(x, y, z) = (x+y

2
, x−y

2
, z) and ψ3(x, y, z) = (x,−y,−z). All the morphisms ψi
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are isomorphisms: ψ1 is an excision isomorphism, ψ3 is an involution and ψ2

could be decomposed in an obvious way

(A2−{0}, (1, 1))∧T → (A2−{0})/((A1×Gm)∪({1}×A1))∧T → (A3−{0})/Y
with the first map being an isomorphism since ((A1 × Gm) ∪ ({1} × A1))
is A1-contractible and the second map being an excision isomorphism. It is
well-known that −idT∧T = idT∧T in the homotopy category, so we obtain
φ ∧ −idT = id ∧ idT yielding

(ρu−1H) ∧ −idT = ((ρu−1H̃) ∧ idT )(φ ∧ −idT ) = (ρu−1H̃) ∧ idT .
Taking the Σ∞T -suspension and using the suspension isomorphism Σ−1

T we get

Σ∞T (ρu−1H) ∪ ε = Σ∞(ρu−1H̃).

The suspension isomorphisms as well as ρπ and sπ are homomorphism of
π0,0(pt)-modules, and ε is central, thus

sπΣTΣ1,1(ε ∪ η) = Σ∞T (ρu−1H) ∪ ε = Σ∞T (ρu−1H̃) = sπΣTΣ1,1(η̃).

The claim follows via taking (sπ)−1 and desuspending. �

Recall that for the stable cohomotopy groups we have canonical Thom
classes for the trivialized vector bundles th(OnX) = Σn

T1 and pushforwards iπ
for the closed embeddings with a trivialized normal bundle (Ni, θ).

We fix the following notation. Let i : Gm → X be a closed embedding to
the zeroth coordinate with t 7→ (t, 0, . . . , 0). Identify the normal bundle

Ni
∼= U = Gm × An ⊂ X

with the Zariski neighbourhood U of Gm and define the trivialization θ : U
'−→

OnGm via
θ(t, x1, . . . , xn) = (t, x1/t, x2, . . . , xn).

There is a pushforward map

iπ : π0,0(Gm)→ π2n,n(X)

induced by the trivialization θ.

Proposition 3. In the above notation we have ∂iπ(1) = (−1)nε ∪ Σn+1
T η.

Proof. From the construction of the pushforward map we have

iπ(1) = zπdπi (th(U, θ))

with zπ being a support extension and dπi a deformation to the normal bundle
isomorphism. Represent i as a composition

i : Gm
i1−→ U

i2−→ X

and let w : Th(i1)
'−→ Th(i) be the induced isomorphism in the homotopy

category. Recall that for the total space of the vector bundle U there is a
natural isomorphism [Ne2, proof of Proposition 3.1] D(Gm, U) ∼= U × A1

and dπi1 = id. By the functoriality of the deformation construction we have
dπi = (wπ)−1, so we need to compute

∂zπ(rπ)−1(th(U, θ)).
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Decomposing z in

z : (X+,+)
r−→ (X, x)

z1−→ Th(i)

and using Lemma 10 we obtain

∂zπ(wπ)−1(th(U, θ)) = ∂rπzπ1 (wπ)−1(th(U, θ)) =

= (τπc )−1(id ∧ ρ)πΣ1,0(τπ(σπ)−1zπ1 (wπ)−1(th(U, θ))).

We can represent the Thom class th(U, θ) ∈ π2n,n(Th(i1)) by the map

(t, x1, x2, . . . , xn) 7→ (x1/t, x2, . . . , xn)

composed with ρ∧n and the canonical shuffling isomorphism

Ξn : ((Gm, 1) ∧ S1
s )
∧n ∼= S2n,n

Identifying one copy of T with P1/A1 via u(x) = [x : 1] we rewrite the above
map as

H̃1 : (t, x1, x2, . . . , xn) 7→ ([x1 : t], x2, . . . , xn).

Put Y = (A1× (An− {0}))∪ ({1} ×An) and consider the following diagram.

(P1/A1) ∧ T∧n−1 T ∧ T∧n−1u∧id
'

oo Ξnρ∧n

'
// S2n,n

Th(i1)

H̃1

OO

w1

'
// ((A2 − {0})/A1 ×Gm) ∧ T∧n−1

H̃∧id
kkWWWWWWWWWWWWWWWWWWWWW

w2

'
// Th(i)

j′

uujjjjjjjjjjjjjjjjjjjj

(A2 − {0}, (1, 1)) ∧ T∧n−1 ψ1

'
//

j
33ggggggggggggggggggggg

X/Y (X, x)

z1

OO

σ1

'
oo

Here H̃(x, y) = [y : x] and all the other maps are given by the tautological
inclusions, i.e. w1 is induced by the inclusion U ⊂ (A2 − {0})×An−1, w2 and
ψ1 are induced by (A2−{0})×An−1 ⊂ X, j′ is given by the identity map on
X and j is given by identity map on A2−{0}. One can easily check that this
diagram is commutative. Hence

zπ1 (wπ)−1(th(U, θ)) = zπ1 ((w2w1)π)−1(th(U, θ)) =

= Σ∞T (Ξnρ
∧n(u−1H̃ ∧ id)jψ−1

1 σ1) = (ψ−1
1 σ1)πΣn−1

T (Σ∞T (ρu−1H̃)).

There is the following commutative diagram consisting of isomorphisms.

(A2 − {0}, (1, 1)) ∧ T∧n−1 ψ1

'
//

s1∧id '
��

X/Y

(A2 − {0})/((A1 ×Gm) ∪ ({1} × A1)) ∧ T∧n−1

'

22fffffffffffffffffffffffffffff

(Gm, 1) ∧ T ∧ T∧n−1

σ2 '

OO

s2∧id
'

oo

All the maps in the diagram are induced by the tautological inclusions, s2

is induced by Gm × A1 ⊂ A2 − {0} and s1 is given by the identity map on
A2 − {0}.
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Thus we have

Σ1,0((ψ−1
1 σ1σ

−1τ)πΣn−1
T (Σ∞T (ρu−1H̃))) =

= Σ1,0(((s−1
1 s2 ∧ id)τ)πΣn−1

T (Σ∞T (ρu−1H̃))) =

= Σ1,0(τπΣn−1
T ((s−1

1 s2)πΣ∞T (ρu−1H̃))).

To sum up, the above considerations together with Lemma 11 yield

∂iπ(1) = ((id ∧ ρ)τ−1
c )πΣ1,0(τπΣn−1

T ((s−1
1 s2)πΣ∞T (ρu−1H̃))) =

= ε∪ ((id∧ρ)τ−1
c )πΣ1,0(τπΣn

TΣ1,1η) = ε∪ ((τ ∧ id)(id∧ρ)τ−1
c )πΣ1,0Σn

TΣ1,1η.

Now we examine the homomorphism

Θ = ((τ ∧ id)(id ∧ ρ)τ−1
c )πΣ1,0Σn

TΣ1,1 : π−1,−1(pt)→ π2n+1,n(T∧n+1).

It can be represented as an external product with a homomorphism T∧n+1 →
S2n+2,n+1 described in the following way. First of all we split all the ΣT into
(id ∧ ρ)πΣ2,1 and carry all the ρπ out,

((τ ∧ id)(id ∧ ρ)τ−1
c )πΣ1,0Σn

TΣ1,1 = (τ̃ τ̃c
−1ρ∧n+1)πΣ2n+2,n+1,

where τ̃ and τ̃c−1 permute the corresponding (Gm, 1)-s and S1
s -s. In fact, this

permutations just take the last S1
s in the domain and put it between the first

and the second Gm-s, giving the following picture:

Gm ∧ Gm ∧ Gm ∧ . . . ∧ Gm ∧ S1
s ∧ S1

s ∧ . . . ∧ S1
s ∧ S1

s

Gm ∧ S1
s ∧ Gm ∧ S1

s ∧ Gm ∧ S1
s ∧ . . . ∧ Gm ∧ S1

s

In order to obtain Θ we need to pair successive (Gm, 1)-s and S1
s -s in the

lower row into copies of T via ρ. The corresponding picture for Σn+1
T co-

incides with the above one up to a cyclic permutation of the S1
s -s. This

permutation automorphism equals to (−1)n in the homotopy category, thus
Θ = (−1)nΣ∧n+1

T . �

6. Inverting the stable Hopf map.

Let A∗,∗(−) be a bigraded ring cohomology theory represented by a com-
mutative monoid A ∈ SH(k). Inverting η ∈ A−1,−1(pt) we obtain a new
cohomology theory with (2i, i) groups isomorphic to (2i + n, i + n) ones by
means of the cup product with η−n. We identify these groups setting η = 1
and obtaining a graded cohomology theory:

A
∗
(Y ) = A∗,∗(Y )⊗A∗,∗(pt)

(
A∗,∗(pt)/

(
1− η

))
,

A
i
(Y ) ∼=

(
A∗,∗(Y )⊗A∗,∗(pt) A∗,∗η (pt)

)2i,i
.

For the algebraic K-theory represented by BGL [PPR2] this construction
gives BGL∗(pt) = 0 since we have η ∈ BGL−1,−1(pt) = K−1(pt) = 0. As
we will see in Corollary 1 it is always the case that an oriented cohomology
theory degenerates to a trivial cohomology theory. Thus we are interested in
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cohomology theories with a special linear orientation but without a general
one. Our running example is hermitian K-theory represented by the spectrum
BO that derives to the Witt groups.

Proposition 4. For every smooth variety X we have a natural isomorphism

BO
i
(X) ∼= W i(X).

Proof. See [An]. �

For the stable cohomotopy groups there is the following result by Morel.

Theorem 1. There exists a canonical isomorphism π0(pt)
'−→ W 0(pt).

Proof. See [Mor2]. �

Definition 18. From now on A∗(−) denotes a graded ring cohomology theory
obtained via the above construction, i.e.

A∗(Y ) = A∗,∗(Y )⊗A∗,∗(pt)
(
A∗,∗(pt)/

(
1− η

))
,

for a bigraded ring cohomology theory A∗,∗(−) represented by a commutative
monoid A ∈ SH(k) with a fixed special linear orientation. Hence we have
Thom and Euler classes and all the machinery of theories with a special linear
orientation, including the Gysin sequences and pushforwards.

Remark 3. Note that from ε-commutativity we have η∪η = −ε∪ (η∪η), thus
inverting η we obtain ε = −1.

Definition 19. Let E be a vector bundle over a smooth variety X. The
hyperbolic bundle associated to E is the symplectic bundle

H(E) =

(
E ⊕ E∨,

(
0 1
−1 0

))
.

Denote by bi(E) = p2i(H(E)) the even Pontryagin classes of H(E) and refer
to them as Borel classes. The total Borel class is b∗(E) =

∑
bi(E)t2i.

We defined Borel classes for arbitrary vector bundles without any addi-
tional structure. We will show later that for a special linear bundle T the
odd Pontryagin classes p2i+1(H(T )) vanish, so we are indeed interested only
in the even ones. Also, for special linear bundles there is an interconnection
between the top Borel class and the Euler class. The following lemma shows
it in the case of rank 2 bundles and the general case would be dealt with in
Corollary 3.

Lemma 12. Let T = (E, λ) be a rank 2 special linear bundle. Then

p∗(H(E)) = 1− e(T )2t2 = b∗(T )

Proof. Let φ be the symplectic form on E corresponding to λ. There exists
an isomorphism [Bal2, Examples 1.1.21, 1.1.22](

E ⊕ E∨,
(

0 1
−1 0

))
∼=
(
E ⊕ E,

(
φ 0
0 −φ

))
,

so we have

p∗(H(E)) = p∗(E, φ)p∗(E,−φ) =

= (1 + p1(E, φ)t)(1 + p1(E,−φ)t) = (1 + e(E, λ)t)(1 + e(E,−λ)t).
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By Lemma 5 and Remark 3 we have e(E,−λ) = −e(E, λ), thus

p∗(H(E)) = (1 + e(T )t)(1− e(T )t) = 1− e(T )2t2. �

7. Complement to the zero section.

In this section we compute the cohomology of the complement to the zero
section of a special linear vector bundle. It turns out that there is a good
answer in terms of the characteristic classes only in the case of the odd rank.

Recall that for a special linear bundle T we denote by T 0 the complement
to the zero section. We start from the following lemma concerning the case of
a special linear bundle possessing a section.

Definition 20. We denote an operator of the ∪-product with an element by
the symbol of the element writing α for − ∪ α.

Lemma 13. Let T be a rank k special linear bundle over a smooth variety
X with a nowhere vanishing section s→ T . Then for some α ∈ Ak−1(T 0) we
have an isomorphism

(1, α) : A∗(X)⊕ A∗+1−k(X)→ A∗(T 0).

Proof. Consider the Gysin sequence

. . .→ A∗−k(X)
0−→ A∗(X)

jA−→ A∗(T 0)
∂A−→ A∗−k+1(X)

0−→ . . .

The section s induces a splitting sA for jA hence gives a splitting r for ∂A.
We have the claim for α = r(1). �

We want to obtain an isomorphism which does not depend on the choice of
the section, so we act as one acts in the projective bundle theorem for oriented
cohomology theories: take a certain special linear bundle over T 0 and compute
its Euler class.

Definition 21. Let p : E → X be a vector bundle over a smooth variety X.
The tautological line subbundle LE of (p∗E)|E0 could be trivialized by means
of the diagonal section ∆: E0 → E0 ×X E. Hence, by Lemma 2, for a special
linear bundle (E, λ) there exists a canonical trivialization

λTE : det(p∗E|E0/LE)
'−→ OE0 .

Thus we obtain a special linear bundle TE = ((p∗E|E0/LE) , λTE) over E0.

For the Witt groups there is a result by Balmer and Gille.

Theorem 2. Let (E, λ) = (O2n+1
pt , 1) be a trivialized special linear bundle of

odd rank over a point with n ≥ 1. Then for e = e(TE) ∈ W 2n(E0) we have an
isomorphism

(1, e) : W ∗(pt)⊕W ∗−2n(pt)
'−→ W ∗(E0).

Proof. See [BG, Theorem 8.13]. �

We can derive an analogous result for A∗(−) from our computation in stable
cohomotopy groups.
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Lemma 14. Let (E, λ) = (O2n+1
pt , 1), n ≥ 1, be a trivialized special linear

bundle over a point. Then for e = e(TE) ∈ A2n(E0) we have an isomorphism

(1, e) : A∗(pt)⊕ A∗−2n(pt)
'−→ A∗(E0).

Proof. Consider the Gysin sequence

. . .→ A∗−2n−1(pt)
0−→ A∗(pt)→ A∗(E0)

∂A−→ A∗−2n(pt)
0−→ . . .

The bundle E is trivial hence e(E, λ) = 0 and the Gysin sequence consists of
short exact sequences.

Consider the dual special linear bundle T ∨E . Taking the dual trivialization
of E∨ we obtain

T ∨E = {(x0, . . . , x2n, y0, . . . , y2n) ∈ E0 × E∨ |x0y0 + · · ·+ x2ny2n = 0}.
There is a section s : E0 → T ∨E with

s(x0, x1, x2, . . . , x2n−1, x2n) = (x0, x1, . . . , x2n, 0, x2,−x1, . . . , x2n,−x2n−1).

This section meets the zero section in Gm
∼= {(t, 0, . . . , 0) | t 6= 0}. Proposi-

tion 1 states that e(T ∨E ) = iA(1) for the inclusion i : Gm → A2n+1 − {0} with
the trivialization of detNi arising from the trivialization of det T ∨E . Identify
Ni
∼= T ∨E |Gm with U = Gm × A2n ⊂ E0 via

(t, 0, . . . , 0, 0, y1 . . . , y2n) 7→ (t, y1, . . . , y2n).

The isomorphism λT ∨E : det T ∨E |Gm
'−→ OGm arises from the canonical trivial-

ization of E∨|Gm and morphism φ : E∨ → L∨E
∼= OGm with

φ(t, y0, y1, . . . , y2n) = (t, ty0).

Thus over t for yi = (yi1, y
i
2, . . . , y

i
2n) we have

λT ∨E (y1 ∧ y2 ∧ · · · ∧ y2n) = det


1/t 0 0 . . . 0
0 y1

1 y2
1 . . . y2n

1

0 y1
2 y2

2 . . . y2n
2

...
...

... . . . ...
0 y1

2n y2
2n . . . y2n

2n


and θ : (U, λT ∨E )

'−→ (O2n
Gm , 1) with θ(t, y1, y2, . . . , y2n) = (t, y1/t, y2, . . . , y2n) is

an isomorphism of special linear bundles.
Consider the following diagram with iπ being a pushforward in stable co-

homotopy groups for the closed embedding i with the trivialization θ of the
normal bundle.

A0(Gm)
iA // A2n(E0)

∂A // A0(pt)

π0(Gm)
iπ //

OO

π2n(E0)

OO

∂π // π0(pt)

OO

The left-hand side commutes since θ is an isomorphism of special linear bun-
dles. The right-hand side of the diagram consist of the structure morphisms for
A∗ and the boundary maps for the Gysin sequences of the inclusion {0} → E
hence commutes as well. Proposition 3 states that ∂πiπ(1) = −1, thus

∂A(e(T ∨E )) = ∂AiA(1) = −1.
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Hence, examining the short exact sequences

0→ A∗(pt)→ A∗(E0)
∂A−→ A∗−2n(pt)→ 0

given by the Gysin sequence, we obtain that {1, e(T ∨E )} is a basis of A∗(E0)
over A∗(pt).

There is a nowhere vanishing section of T ∨E ⊕T ∨E constructed analogous to
s defined above, so

e(T ∨E )2 = e(T ∨E ⊕ T ∨E ) = 0.

Lemma 7 yields that for some α1, α2, β1, β2 ∈ A∗(pt) we have

e = (α1 + β1 ∪ e(T ∨E )) ∪ e(T ∨E ) = α1 ∪ e(T ∨E ),

e(T ∨E ) = (α2 + β2 ∪ e(T ∨E )) ∪ e = α2 ∪ α1 ∪ e(T ∨E ).

We already know that {1, e(T ∨E )} is a basis, then α2 ∪ α1 = 1 and α1 is
invertible. Hence {1, α1 ∪ e(T ∨E )} = {1, e} is a basis as well.

�

Corollary 1. Let A∗,∗(−) be an oriented cohomology theory represented by a
commutative monoid A ∈ SH(k). Then A∗(pt) = 0.

Proof. There is a natural special linear orientation on A∗,∗(−) obtained by set-
ting th(E, λ) = th(E) with the latter Thom class arising from the orientation
of A∗,∗(−). Hence for a rank n special linear bundle we have e(E, λ) = cn(E).
By the above lemma, for E = O3

pt there is an isomorphism

(1, c2(TE)) : A
∗
(pt)⊕ A∗−2

(pt)
'−→ A

∗
(E0).

Multiplicativity of total Chern classes yields c∗(OE0)c∗(TE) = c∗(O3
E0), hence

c2(TE) = 0. The above isomorphism yields A∗(pt) = 0. �

Having a canonical basis for a trivial bundle we can glue it into a basis in
the cohomology of the complement to the zero section of an arbitrary special
linear bundle of odd rank.

Theorem 3. Let (E, λ) be a special linear bundle of rank 2n+ 1, n ≥ 1, over
a smooth variety X. Then for e = e(TE) we have an isomorphism

(1, e) : A∗(X)⊕ A∗−2n(X)→ A∗(E0).

Proof. The general case is reduced to the case of the trivial vector bundle E via
the usual Mayer-Vietoris arguments. In the latter case we have a commutative
diagram of the Gysin sequences

0 // A∗(X) // A∗(E0)
∂A // A∗−2n(X) // 0

0 // A∗(pt) //

OO

A∗(E ′0)
∂A //

OO

A∗−2n(pt)

pA

OO

// 0

with E ′ = O2n+1
pt . By Lemma 14 the element ∂A(e (TE′)) generates A∗−2n(pt) as

a module overA∗(pt), thus for a certain α ∈ A∗(pt) we have α∪∂A(e (TE′)) = 1.
Using E = p∗E ′ we obtain

α ∪ ∂A(e (TE)) = α ∪ pA∂A(e (TE′)) = 1,
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so ∂A (e (TE)) generates A∗−2n(X) over A∗(X). Hence (1, e) is an isomorphism.
�

Remark 4. In case of rankE = 1 one still has an isomorphism: a special linear
bundle of rank one is a trivialized line bundle, hence there is an isomorphism

A∗(X)⊕ A∗(X) ∼= A∗(E0) = A∗(X ×Gm)

induced by the isomorphism A∗(pt)⊕ A∗(pt) ∼= A∗(Gm).

Corollary 2. Let T be a special linear bundle of odd rank over a smooth
variety X. Then e(T ) = 0.

Proof. Set rank T = 2n+ 1 and e = e(T ). Consider the Gysin sequence

. . .→ A0(X)
e−→ A2n+1(X)

jA−→ A2n+1(T 0)→ A1(X)→ . . .

The above calculations show that jA is injective hence e = 0. �

8. Special linear projective bundle theorem.

In this section we obtain a special linear version of the projective bundle
theorem. First of all we introduce the varieties that act for the projective
spaces in the special linear context.

Definition 22. For k < n consider the group

P ′k =

(
SLk ∗

0 SLn−k

)
.

The quotient variety SGr(k, n) = SLn/P
′
k is called a special linear Grassmann

variety. We denote by T1 and T2 the tautological special linear bundles over
SGr(k, n) with rank T1 = k and rank T2 = n− k.

Remark 5. We have a projection SLn/P ′k → SLn/Pk identifying the special
linear Grassmann variety with the complement to the zero section of the deter-
minant of the tautological vector bundle over the ordinary Grassmann variety
Gr(k, n). This yields the following geometrical description of SGr(k, n): fix a
vector space V of dimension n. Then

SGr(k, n) = {(U ≤ V, λ ∈ (ΛkU)0) | dimU = k}.

In particular, we have SGr(1, n) ∼= An − {0}.

Theorem 4. For the special linear Grassmann varieties we have the following
isomorphisms.

(1, e1, ..., e
2n−2
1 , e2) :

2n−2⊕
i=0

A∗−2i(pt)⊕ A∗−2n+2(pt)→ A∗(SGr(2, 2n)),

(1, e1, e
2
1, ..., e

2n−1
1 ) :

2n−1⊕
i=0

A∗−2i(pt)→ A∗(SGr(2, 2n+ 1)),

with e1 = e(T1), e2 = e(T2).
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Proof. We are going to deal with several special linear Grassmann varieties
at once, so we will use Ti(r, k) for Ti over SGr(r, k) and abbreviate e(Ti(r, k))
to ei(r, k) and e(Ti(r, k)∨) to e∨i (r, k). The proof is done by induction on the
Grassmannian’s dimension.
The base case. We have SGr(2, 3) ∼= SGr(1, 3) ∼= A3 − {0} and under

these isomorphisms the bundle T1(2, 3)∨ goes to T2(1, 3) which goes to TO3
pt

in the notation of definition 21. Note that rank T1(2, 3) = 2, thus T1(2, 3) ∼=
T1(2, 3)∨ and e(T1(2, 3)) = e (T1(2, 3)∨). Hence Lemma 14 gives the claim for
SGr(2, 3).
Basic geometry. Fix a vector space V of dimension k + 1, a subspace

W ≤ V of codimension one and forms µ1 ∈ (Λk+1V )0, µ2 ∈ (ΛkW )0. Then
we have the following diagram constructed in the same vein as in the case of
ordinary Grassmannians:

SGr(2, k)
i // SGr(2, k + 1) Y

joo

p

��
SGr(1, k)

the inclusion i corresponds to the pairs (U, µ ∈ (Λ2U)0) with U ≤ W , dimU =
2; the open complement Y consists of the pairs (U, µ ∈ (Λ2U)0) with dimU =
2, dimU ∩W = 1; the projection p is given by p(U, µ) = (U ∩W,µ′) where
µ′ is given by the isomorphism (U ∩W ) ⊗ V/W ∼= Λ2U . Here i is a closed
embedding, j is an open embedding and p is an Ak-bundle. Take an arbitrary
f ∈ V ∨ such that ker f = W . It gives rise to a constant section of the trivial
bundle

(
Ok+1
SGr(2,k+1)

)∨
hence a section of T1(2, k + 1)∨. The latter section

vanishes exactly over i(SGr(2, k)). Note that we have rank T1(2, k + 1) = 2
hence e∨1 (2, k + 1) = e1(2, k + 1).
k=2n-1. Consider the localization sequence.

. . .→ A∗−2(SGr(2, 2n−1))
iA−→ A∗(SGr(2, 2n))

jA−→ A∗(SGr(1, 2n−1))→ . . .

Lemma 14 states that {1, e2(1, 2n− 1)} is a basis of A∗(SGr(1, 2n− 1)) over
A∗(pt). We have j∗T2(2, 2n) ∼= p∗T2(1, 2n− 1) and

jA(e2(2, 2n)) = e2(1, 2n− 1)

hence jA is a split surjection (over A∗(pt)) with the splitting defined by

1 7→ 1, e2(1, 2n− 1) 7→ e2(2, 2n).

Then iA is injective. Hence to obtain a basis of A∗(SGr(2, 2n)) it is sufficient
to calculate the pushforward for a basis of A∗−2(SGr(2, 2n− 1)) and combine
it with {1, e2(2, 2n)}. Using the induction we know that

{1, e1(2, 2n− 1), . . . , e1(2, 2n− 1)2n−3}
is a basis of A∗(SGr(2, 2n− 1)). We have i∗(T1(2, 2n)) ∼= T1(2, 2n− 1) hence

e1(2, 2n− 1) = iA(e1(2, 2n)).

By Proposition 1 we have

iA(e1(2, 2n− 1)l) = e1(2, 2n)l+1
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obtaining the desired basis

{e1(2, 2n), e1(2, 2n)2, . . . , e1(2, 2n)2n−2, 1, e2(2, 2n)}
of A∗(SGr(2, 2n)) over A∗(pt).
k=2n. Consider the localization sequence.

. . .
∂A−→ A∗−2(SGr(2, 2n))

iA−→ A∗(SGr(2, 2n+ 1))
jA−→ A∗(SGr(1, 2n))

∂A−→ . . .

Using the induction we know a basis of A∗(SGr(2, 2n)), namely

{1, e1(2, 2n), e1(2, 2n)2, . . . , e1(2, 2n)2n−2, e2(2, 2n)}
and Lemma 13 gives us a non-canonical basis {1, α} for A∗(SGr(1, 2n)). Ex-
amine iA(e2(2, 2n)). It can’t be computed using Proposition 1 since it seems
that e2(2, 2n) can not be pullbacked from A∗(SGr(2, 2n+1)), so we use the fol-
lowing argument. Consider a nontrivial vector w ∈ W . It induces constant sec-
tions of O2n

SGr(2,2n) and O
2n+1
SGr(2,2n+1) and sections of T2(2, 2n) and T2(2, 2n+ 1).

The latter sections vanish over SGr(1, 2n − 1) and SGr(1, 2n) respectively.
Here SGr(1, 2n−1) corresponds to the vectors in W/〈w〉 and SGr(1, 2n) cor-
responds to the vectors in V/〈w〉. Hence we have the following commutative
diagram consisting of closed embeddings.

SGr(1, 2n− 1)
r′ //

i′

��

SGr(2, 2n)

i
��

SGr(1, 2n)
r // SGr(2, 2n+ 1)

By Proposition 1 we have e2(2, 2n) = r′A(1), so, using Proposition 2, we obtain
iA(e2(2, 2n)) = rAi

′
A(1). Notice that Ni′ is a trivial bundle of rank one. In fact,

there is a section of trivial bundle T1(1, 2n)∨ over SGr(1, 2n) constructed
using the same element f such that ker f = W and this section meets the
zero section exactly at SGr(1, 2n− 1). So we have

iA(e2(2, 2n)) = rAi
′
A(1) = rA(e∨1 (1, 2n)) = rA(0) = 0.

We claim that ker iA = A∗(pt)∪ e2(2, 2n) and Im jA = A∗(pt)∪ 1. We have
jA(1) = 1, hence ∂A(1) = 0 and

ker iA = Im ∂A = A∗(pt) ∪ ∂A(α).

The localization sequence is exact, so we have

e2(2, 2n) = ∂A(y ∪ α) = y ∪ ∂A(α)

for some y ∈ A∗(pt) and since e2(2, 2n) is an element of the basis, y is not
a zero divisor. Consider the presentation of ∂A(α) with respect to the chosen
basis:

∂A(α) = x0 ∪ 1 + x1 ∪ e1(2, 2n) + · · ·+ x2n−2 ∪ e1(2, 2n)2n−2 + z ∪ e2(2, 2n).

We have y ∪ ∂A(α) = e2(2, 2n), hence y ∪ z = 1 and every y ∪ xi = 0, hence
xi = 0. Then ∂A(α) = z ∪ e2(2, 2n) and

ker iA = Im ∂A = A∗(pt) ∪ ∂A(α) = A∗(pt) ∪ e2(2, 2n).

We have

∂A(x0 ∪ 1 + x1 ∪ α) = x1 ∪ ∂A(α) = x1 ∪ z ∪ e2(2, 2n),
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hence Im jA = ker ∂A = A∗(pt) ∪ 1.

There is an obvious splitting for A∗(SGr(2, 2n+1))
jA−→ Im jA, 1 7→ 1. Then

calculating by the same vein as in the odd-dimensional case the pushforwards
for the basis of Coker ∂A, {e1(2, 2n)l}, and adding to them {1}, we obtain the
desired basis of SGr(2, 2n+ 1)

{e1(2, 2n+ 1), . . . , e1(2, 2n+ 1)2n−1, 1}. �

Definition 23. Let T be a special linear bundle over a smooth variety X. We
define the relative special linear Grassmann variety SGr(k, T ) in an obvious
way. This variety is a SGr(k, rank T )-bundle over X. Similarly to the above,
we denote by T1 and T2 the tautological special linear bundles over SGr(k, T ).

Theorem 5. Let T be a special linear bundle over a smooth variety X.
(1) If rank T = 2n then there is an isomorphism

(1, e1, ..., e
2n−2
1 , e2) :

2n−2⊕
i=0

A∗−2i(X)⊕ A∗−2n+2(X)
'−→ A∗(SGr(2, T )),

with e1 = e(T1), e2 = e(T2).
(2) If rank T = 2n+ 1 then there is an isomorphism

(1, e, e2, ..., e2n−1) :
2n−1⊕
i=0

A∗−2i(X)
'−→ A∗(SGr(2, T )),

with e = e(T1).

Proof. The general case is reduced to the case of the trivial bundle T via the
usual Mayer-Vietoris arguments. The latter case follows from Theorem 4. �

9. A splitting principle.

In this section we assert a splitting principle for the cohomology theories
with a special linear orientation and inverted stable Hopf map. The principle
states that from the viewpoint of such cohomology theories every special linear
bundle is a direct sum of rank 2 special linear bundles and at most one trivial
linear bundle.

Definition 24. For k1 < k2 < · · · < km consider the group

P ′k1,...,km−1
=


SLk1 ∗ . . . ∗

0 SLk2−k1 . . . ∗
...

... . . . ...
0 0 . . . SLkm−km−1


and define a special linear flag variety as the quotient

SF(k1, . . . , km) = SLkm/P
′
k1,...,km−1

.

In particular, we are interested in the following varieties:

SF(2n) = SF(2, 4, ..., 2n), SF(2n+ 1) = SF(2, 4, ..., 2n, 2n+ 1).

These varieties are calledmaximal SL2 flag varieties. Similar to the case of the
special linear Grassmannians we denote by Ti the tautological special linear
bundles over SF(k1, k2, . . . , km) with rank Ti = ki − ki−1.
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Remark 6. The projection
SF(k1, k2, . . . , km) = SLn/P

′
k1,...,km

→ SLn/Pk1,...,km = F(k1, k2, . . . , km)

yields the following geometrical description of the special linear flag varieties.
Consider a vector space V of dimension km. Then we have

SF(k1, k2, . . . , km) =

=
{

(V1 ≤ · · · ≤ Vm−1 ≤ V, λ1, . . . , λm−1)
∣∣∣ dimVj = kj, λj ∈

(
ΛkjVj

)0
}

Definition 25. Let T be a special linear bundle over a smooth variety X.
Then we define the relative special linear flag variety SF(k1, k2, . . . , km−1, T )
in an obvious way. This variety is an SF(k1, k2, . . . , km−1, rank T )-bundle over
X. We denote relative version of the maximal SL2 flag variety by SF(T ).

Theorem 6. Let T be a rank k special linear bundle over a smooth variety X.
Then A∗(SF(2, 4, . . . , 2n, T )) is a free module over A∗(X) with the following
basis:

• k is odd:

{em1
1 em2

2 . . . emnn | 0 ≤ mi ≤ k − 2i} ,
• k is even:{

u1u2 . . . un

∣∣∣∣ui =

[
emii , 0 ≤ mi ≤ k − 2i
ei+1ei+2 . . . en+1

}
,

where ei = e(Ti, λTi).

Proof. Proceed by induction on n. For n = 1 the claim follows from Theo-
rem 5.

Consider the projection
p : Y = SF(2, 4, . . . , 2n, T )→ SF(2, 4, . . . , 2n− 2, T ) = Y1

that forgets about the last subspace. Denote the tautological bundles over Y
by Ti and the tautological bundles over Y1 by T ′i .
k is odd. Using an isomorphism Y ∼= SGr(2, T ′n) and Theorem 5 we obtain

that A∗(Y ) is a free module over A∗(Y1) with the basis

B =
{

1, en, . . . , e
k−2n
n

}
.

Using the induction we have the following basis for A∗(Y1):

B1 =
{
e′m1

1 e′m2
2 . . . e

′mn−1

n−1

∣∣ 0 ≤ mi ≤ k − 2i
}
,

with e′i = e(T ′i ). One has p∗(T ′i ) ∼= Ti and pA(e′i) = ei for i ≤ n−1. Computing
the pullback for B1 and multiplying it with B we obtain the desired basis.
k is even. This case is completely analogous to the previous one. We have

an isomorphism Y ∼= SGr(2, T ′n) then by Theorem 5 obtain that A∗(Y ) is a
free module over A∗(Y1) with the basis

B =

{
un

∣∣∣∣un =

[
emnn , 0 ≤ mn ≤ k − 2n
en+1

}
.

Using the induction we have the following basis for A∗(Y1):

B1 =

{
u1u2 . . . un−1

∣∣∣∣ui =

[
e′mii , 0 ≤ mi ≤ k − 2i
e′i+1e

′
i+2 . . . e

′
n

}
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with e′i = e(T ′i ). Note that p∗(T ′i ) ∼= Ti and pA(e′i) = ei for i ≤ n − 1.
Multiplicativity of the Euler classes yields pA(e′n) = enen+1. Computing the
pullback for B1 and multiplying it with B we obtain the desired basis of Y . �

A straightforward consequence of the splitting principle is the following
corollary relating the top characteristic classes of special linear bundles.

Corollary 3. Let T be a special linear bundle over a smooth variety X and
put n = [1

2
rank T ]. Then we have

(1) e(T ) = e(T ∨),
(2) b∗(T ) = p∗(H(T )),
(3) bi(T ) = 0 for i > n,
(4) if rank T = 2n then bn(T ) = (−1)ne(T )2.

Proof. Consider p : Y
p1−→ SF(T )

p2−→ X with p1 being an Ar-bundle splitting
the p∗2T into a sum of special linear vector bundles isomorphic to p∗1Ti. One
can construct Y in a similar way as we used in Lemma 3. From the theorem we
have that pA is an injection. We have p∗T ∼=

⊕
i p
∗
1Ti and p∗T ∨ ∼=

⊕
i p
∗
1T ∨i .

Note that rank p∗1Ti ≤ 2, hence p∗1Ti ∼= p∗1T ∨i and we obtain p∗T ∼= p∗T ∨, so
pAe(T ) = pAe(T ∨) and e(T ) = e(T ∨).

By Lemma 12 and multiplicativity of total Pontryagin classes we have

p∗(H(T )) =
n∏
i=1

(1− e(Ti)2t2),

thus the odd Pontryagin classes vanish and bi = 0 for i > n. Moreover, for a
special linear bundle of the even rank this equality yields

pAbn(T ) = (−1)n
n∏
i=1

e(Ti)2 = (−1)n(pAe(T ))2. �

Another consequence of the splitting principle is multiplicativity of total
Borel classes.

Lemma 15. Let T be a special linear bundle over a smooth variety X and
let T1 ≤ T be a special linear subbundle. Then b∗(T ) = b∗(T1)b∗(T /T1).

Proof. Considering the Ar-bundle p : Y → X described in Lemma 3 one may
assume that T ∼= T1⊕T /T1. The claim of the lemma follows from the second
item of the above corollary and multiplicativity of total Pontryagin classes.

�

We finish this section with the theorem claiming that every special linear
bundle of even rank is cohomologically symplectic in the following precise
sense.

Theorem 7. Let T = (E, λ) be a special linear bundle of even rank over a
smooth variety X. Then there exists a morphism of smooth varieties p : Y →
X such that pA : A∗(X) → A∗(Y ) is injective and p∗E has a canonical sym-
plectic form φ compatible with trivialization p∗λ.

Proof. Consider the same morphism p : Y → X as we used in the proof if
Corollary 3, i.e. Y is an Ar-bundle over SF(T ) such that

p∗T ∼=
⊕
Ti,
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where Ti are special linear bundles of rank two. Theorem 6 yields that pA is
injective. The special linear bundles Ti = (E, λi) have canonical symplectic
forms φi induced by trivializations λi. Hence E ∼=

⊕
Ei has a symplectic form

φ = φ1 ⊥ φ2 ⊥ . . . ⊥ φn and it is compatible with λ = λ1⊗ λ2⊗ . . .⊗ λn. �

10. Cohomology of the partial flags.

Now we turn to the computation of the relations that Borel and Euler
classes of the tautological bundles satisfy.

Theorem 8. Let T be a special linear bundle over a smooth variety X and
put bi = bi(T ), e = e(T ) for its characteristic classes. Then for the special
linear Grassmannian SGr(2, T ) we have the following natural isomorphisms
of A∗(X)-algebras.

(1) If rank T = 2n then

φ1 : A
∗(X)[e1, e2]

/
R2,2n

'−→ A∗(SGr(2, T )),

where

R2,2n =
(
e1e2 − e, (−1)ne2

2 +
n−1∑
i=0

bn−i−1e
2i
1

)
and the isomorphism is induced by φ1(e1) = e(T1), φ1(e2) = e(T2).

(2) If rank T = 2n+ 1 then

φ2 : A
∗(X)[e1]

/(∑n
i=0 bn−ie

2i
1

) '−→ A∗(SGr(2, T )),

the isomorphism is induced by φ2(e1) = e(T1).

Proof. In view of the Theorem 5 it is sufficient to show that the claimed
relations hold, since φ1 and φ2 are supposed to map the bases to the bases. We
have an isomorphism p∗T /T1

∼= T2 for the natural projection p : SGr(2, T )→
X, so the relation e(T1)e(T2) = e follows from the multiplicativity of the Euler
class. In order to obtain the others relation compute the total Borel class

b∗(p
AT ) = b∗(T1)b∗(T2).

Dividing by b∗(T1) = 1 + b1(T1)t2 in A∗(SGr(2, T ))[[t]] we get

1 + (b1 − b1(T1))t2 + . . .+

(
i∑

j=0

(−1)jbi−jb1(T1)j

)
t2i + . . . =

∑
bi(T2)t2i.

In case of rank T = 2n recall that by Corollary 3

b1(T1) = −e(T1)2, bn−1(T2) = (−1)n−1e(T2)2

and compare the coefficients at t2n−2. In the other case by the same Corollary 3
we have b1(T1) = −e(T1)2 and bn(T2) = 0, so the claim follows from the
comparison of the coefficients at t2n. �

Corollary 4. There exist natural isomorphisms of A∗(pt)-algebras

(1) φ1 : A
∗(pt)[e1, e2]

/(
e1e2, e

2n−2
1 + (−1)ne2

2

) '−→ A∗(SGr(2, 2n)),

(2) φ2 : A
∗(pt)[e1]

/(
e2n

1

) '−→ A∗(SGr(2, 2n+ 1)),
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induced by φ1(e1) = e(T1), φ1(e2) = e(T2) and φ2(e1) = e(T1).

Proof. The characteristic classes of the trivial bundle vanish, so the claim
follows from the above theorem. �

In order to write down the relations for the cohomology of the special linear
flag varieties we need to perform certain computations involving symmetric
polynomials. Put hi(x1, x2, . . . , xn) for the i-th complete symmetric polyno-
mial in n variables.

Lemma 16. Let OnX be a trivialized special linear bundle over a smooth variety
X. Suppose that there is an isomorphism of special linear bundles (OnX , 1) ∼=
(⊕ki=1Ti)⊕ T ′ for the special linear bundles Ti of rank 2. Then

bi(T ′) = hi(e(T1)2, e(T2)2, . . . , e(Tk)2).

Proof. Using the multiplicativity of total Borel classes and Lemma 12 we
obtain

(
k∏
i=1

(1− e(Ti)2t2))b∗(T ′) = b∗(OnX) = 1.

The claim follows from the comparison of the coefficients at t2i in the series
obtained inverting (1− e(Ti)2t2) in A∗(X)[[t]].

1 + b1(T ′)t2 + b2(T ′)t4 + . . . =
k∏
i=1

(1 + e(Ti)2t2 + e(Ti)4t4 + . . .) =

= 1 + h1(e(T1)2, . . . , e(Tk)2)t2 + h2(e(T1)2, . . . , e(Tk)2)t4 + . . .

�

Proposition 5. We have the following isomorphisms of A∗(pt)-algebras.

(1) φ1 : A
∗(pt)[e1, . . . , em, e

′
m]
/
I2m,2n

'−→ A∗(SF(2, 4, . . . , 2m, 2n)),

where

I2m,2n =
(
e1e2 . . . eme

′
m, (−1)ne2

2 . . . e
2
me
′2
m + hn−1(e2

1),

(−1)n−1e2
3 . . . e

2
me
′2
m + hn−2(e2

1, e
2
2), . . . ,

(−1)n−m+1e′2m + hn−m(e2
1, e

2
2, . . . , e

2
m)
)

and the isomorphism is induced by φ1(ei) = e(Ti), φ1(e′m) = e(Tm+1).
(2) φ2 : A

∗(pt)[e1, . . . , em]
/
I2m,2n+1

'−→ A∗(SF(2, 4, . . . , 2m, 2n+ 1)),

where

I2m,2n+1 =
(
hn(e2

1), hn−1(e2
1, e

2
2), . . . , hn−m+1(e2

1, e
2
2, . . . , e

2
m)
)

and the isomorphism is induced by φ2(ei) = e(Ti).

Proof. The detailed proof would be quite messy, so we present the reasoning
only for item (2). The even case is quite the same, but the formulas are a bit
more complicated.

The considered special linear flag varieties are iterated SGr(2, k)-bundles,
so one may proceed by induction on m. The case of m = 1 was dealt with
in Corollary 4. Write Ti,m for the i-th tautological special linear bundle over



THE SPECIAL LINEAR VERSION OF THE PROJECTIVE BUNDLE THEOREM 31

SF(2, 4, . . . , 2m, 2n + 1). As usual, taking an Ar-bundle Y → SF allows us
to assume that O2n+1

SF splits into a sum (⊕mi=1Ti,m)⊕ Tm,m+1. Put

T ′j,m = (
m⊕

i=j+1

Ti,m)⊕ Tm+1,m

and shorten the notation for the Euler classes via ei,m = e(Ti,m), e′i,m = e(T ′i,m).
There is a natural isomorphism

SF(2, 4, . . . , 2m+ 2, 2n+ 1) ∼= SGr(2, Tm+1,m).

By Theorem 8 there is an isomorphism

A∗(SF(2, 4, . . . , 2m, 2n+ 1))[em+1,m+1]
/(∑n−m

i=0 bn−m−i(T ′m,m)e2i
m+1,m+1

) ∼=
∼= A∗(SF(2, 4, . . . , 2m+ 2, 2n+ 1)).

The induction assumption provides the description for the coefficients of this
polynomial algebra that is

A∗(SF(2, 4, . . . , 2m, 2n+ 1)) ∼= A∗(pt)[e1,m, . . . , em,m]
/
I2m,2n+1

.

Note that ei,m = ei,m+1 for i ≤ m. Thus it is sufficient to show that
n−m∑
i=0

bn−m−i(T ′m,m)e2i
m+1,m+1 = hn−m(e2

1,m+1, e
2
2,m+1, . . . , e

2
m+1,m+1).

Applying Lemma 16 we obtain
bn−m−i(T ′m,m) = hn−m−i(e

2
1,m, e

2
2,m, . . . , e

2
m,m).

The claim follows from the well-known identity

hk(x1, . . . , xl) =
k∑
i=0

hi(x1, . . . , xl−1)xk−il . �

Remark 7. The relations in the proposition arise from the comparison of the
different descriptions for the top Borel class of T ′i,m:

(−1)n−i(ei+1 . . . em+1)2 = (−1)ie(T ′i,m)2 = bn−i(T ′i ) = hn−i(e
2
1, . . . , e

2
i ).

In the even case there is another one relation expressing the triviality of the
Euler class of the bundle (⊕mi=1Ti)⊕ Tm+1.

There is another description for the ideals I2m,2n and I2m,2n+1.

Lemma 17. For the above ideals I2m,2n and I2m,2n+1 we have

I2m,2n =
(
e1e2 . . . eme

′
m, (−1)n−m+1e′2m + hn−m(e2

1, e
2
2, . . . , e

2
m),

hn−m+1(e2
1, . . . , e

2
m), hn−m+2(e2

1, . . . , e
2
m), . . . , hn−1(e2

1, . . . , e
2
m)
)
,

I2m,2n+1 =
(
hn−m+1(e2

1, . . . , e
2
m), hn−m+2(e2

1, . . . , e
2
m), . . . , hn(e2

1, . . . , e
2
m)
)
.

Proof. This equalities follow from the obvious identity
hi(x1, x2, . . . , xn) = hi(x1, x2, . . . , xn−1) + xnhi−1(x1, x2, . . . , xn). �

Remark 8. The vanishing of the polynomials hi(e2
1, . . . , e

2
m) corresponds to the

vanishing of the Borel classes bi(Tm+1), i > n−m for the tautological bundle
Tm+1 over SF(2, 4, . . . , 2m, 2n+ 1).
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Remark 9. Consider the case of the maximal SL2 flag variety, i.e. SF(2n)
and SF(2n+ 1). Investigation of the above relations yields that the cohomol-
ogy of these varieties coincide with the algebras of coinvariants for the Weyl
groups W (Dn) and W (Bn) respectively. In other words, there are natural
isomorphisms

A∗(SF(2n)) ∼= A∗(pt)[e1, e2, ..., en]
/(
s1, s2, . . . , sn−1, t

)
,

A∗(SF(2n+ 1)) ∼= A∗(pt)[e1, e2, ..., en]
/(
s1, s2, . . . , sn

)
where si = σi(e

2
1, e

2
2, . . . , e

2
n) for the elementary symmetric polynomials σi and

t = e1e2 . . . en.

11. Symmetric polynomials.

In this section we deal with the polynomials invariant under the action
of the Weyl group W (Bn) or W (Dn) and obtain certain spanning sets for
the polynomial rings. Our method is an adaptation of the one used in [Fu,
§ 10, Proposition 3].

Consider Zn and fix a usual basis {e1, . . . , en}. Let

W (Bn) = {φ ∈ Aut(Zn) |φ(ei) = ±ej}

be the Weyl group of the root system Bn and let

W (Dn) = {φ ∈ Aut(Zn) |φ(ei) = (−1)kiej, (−1)
∑
ki = 1}

be the Weyl group of the root system Dn. Identifying R = Z[e1, . . . , en] with
the symmetric algebra Sym∗((Zn)∨) in a usual way, we obtain the actions of
these Weyl groups on R. Let RB = RW (Bn) and RD = RW (Dn) be the algebras
of invariants.

For the elementary polynomials σi ∈ Z[x1, . . . , xn] consider

si = σi(e
2
1, . . . , e

2
n), t = σn(e1, . . . , en).

One can easily check that RB = Z[s1, . . . , sn] and RD = Z[s1, . . . , sn−1, t].
In order to compute spanning sets for R over RB and RD we need "decreas-

ing degree" equalities provided by the following lemma.

Lemma 18. There exist homogeneous polynomials gi, hi ∈ R such that

e2n
1 =

n∑
i=1

gisi, e2n−1
1 =

n−1∑
i=1

hisi + hnt.

Proof. Let IB =
(
s1, . . . , sn

)
and ID =

(
s1, . . . , sn−1, t

)
be the ideals generated

by the homogeneous invariant polynomials of positive degree. We need to show
that e2n

1 ∈ IB and e2n−1
1 ∈ ID. Set SB = R/IB, SD = R/ID.

Consider SB [[x]]. Since all the si belong to IB we have

(1− ē2
1x)(1− ē2

2x). . .(1− ē2
nx) = 1,

hence
(1− ē2

2x)(1− ē2
3x). . .(1− ē2

nx) = 1 + ē2
1x+ ē4

1x
2 + . . .

Comparing the coefficients at xn we obtain ē2n
1 = 0, thus e2n

1 ∈ IB.
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Consider SD [[x]]. As above, we have

(1− ē2
1x

2)(1− ē2
2x

2). . .(1− ē2
nx

2) = 1,

hence

(1 + ē1x)(1− ē2
2x

2)(1− ē2
3x

2). . .(1− ē2
nx

2) = 1 + ē1x+ ē2
1x

2 + . . .

Comparing the coefficients at x2n−1 we obtain

ē2n−1
1 = (−1)n−1ē1ē

2
2. . .ē

2
n = (−1)n−1t̄ē2ē3. . .ēn = 0,

thus e2n−1
1 ∈ ID. �

Proposition 6. In the above notation we have the following spanning sets:
(1) B1 = {em1

1 em2
2 . . . emnn | 0 ≤ mi ≤ 2n− 2i+ 1}

spans R over RB.

(2) B2 =

{
u1u2 . . . un−1

∣∣∣∣ui =

[
emii , 0 ≤ mi ≤ 2n− 2i
ei+1ei+2 . . . en

}
spans R over RD.

Proof. In both cases proceed by induction on n. The base case of n = 1 is clear.
Denote by B′1 and B′2 the spanning sets in R′ = Z[e2, . . ., en] and let s′i, t′ ∈ R′
be the corresponding invariant polynomials. Note that si = e1s

′
i−1 + s′i and

t = e1t
′.

It is sufficient to show that every monomial is a RB (or RD) linear com-
bination of the monomials of lesser total degree and monomials from the
corresponding spanning set.

(1) Consider a monomial f = ek11 e
k2
2 . . .e

kn
n ∈ R. In case of k1 ≥ 2n we can

use the preceding lemma and substitute
∑
gisi for e2n

1 obtaining

f =
∑

sigie
k1−2n
1 ek22 . . .e

kn
n

with deg gie
k1−2n
1 ek22 . . .e

kn
n < deg f , so we get the claim. Now suppose that

k1 < 2n. By the induction we have

ek22 e
k3
3 . . .e

kn
n =

∑
αj(s

′
1, . . . , s

′
n−1)b′j

for some b′j ∈ B′1 and αj ∈ Z[x1, . . . , xn−1]. We can assume that all the sum-
mands at the right-hand side are homogeneous of total degree k2 + . . . + kn.
Since si = e1s

′
i−1 + s′i one has

αj(s1, . . . , sn−1) = αj
(
s′1, . . . , s

′
n−1

)
+
∑
l>0

el1βjl

for some βjl ∈ RB. Thus we obtain

f =
∑
j

ek11 αj(s1, . . . , sn−1)b′j −
∑
j,l

ek1+l
1 βjlb

′
j.

Note that ek11 b
′
j ∈ B1, so the first sum is a RB-linear combination of the

monomials from the spanning set. If deg βjl > 0 then deg ek1+l
1 b′j < deg f and

it is the case of the linear combination with lesser total degree. At last, in case
of deg βjl = 0 there are two variants: if k1 + l < 2n then we have ek1+l

1 b′j ∈ B1,
otherwise k1 +l ≥ 2n and we can lower the total degree by using the preceding
lemma.
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(2) Consider a monomial f = ek11 e
k2
2 . . .e

kn
n ∈ R. As above, in case of k1 ≥

2n−1 we can use the preceding lemma and lower the total degree, so suppose
that k1 < 2n− 1. By induction we have

ek22 e
k3
3 . . .e

kn
n =

∑
αj(s

′
1, . . . , s

′
n−2, t

′)b′j

for some b′j ∈ B′2 and αj ∈ Z[x1, . . . , xn−1]. One has t′2 = s′n−1 hence

αj(s
′
1, . . . , s

′
n−2, t) = α̃j(s

′
1, . . . , s

′
n−2, s

′
n−1) + t′α̂j(s

′
1, . . . , s

′
n−2, s

′
n−1).

As above, we can substitute si into α̃j and α̂j and obtain some β̃jl, β̂jl ∈ RD.
Thus we have

f =
∑
j

ek11 α̃j(s1, . . . , sn−1)b′j +
∑
j

ek11 α̂j(s1, . . . , sn−1)t′b′j−

−
∑
j,l

ek1+l
1 β̃jlb

′
j −

∑
j,l

ek1+l
1 β̂jlt

′b′j.

In the first sum we have ek11 b
′
j ∈ B2. One has t′b′j ∈ B2, so in case of k1 = 0

the second sum is a linear combination of the elements from the spanning set,
otherwise, if k1 ≥ 1, one can lower the total degree by carrying out t = e1t

′.
The third sum is dealt with like the second one in (1), in case of deg β̃jl = 0

we use that ek1+l
1 b′j ∈ B2 or lower degree using the preceding lemma, otherwise

we lower degree by carrying out β̃jl. At last, in the forth sum we lower degree
by carrying out t = e1t

′.
�

12. Cohomology of the special linear Grassmannians and BSLn.

Now we are ready to compute the cohomology of the special linear Grass-
mannians. Recall that hi(x1, x2, . . . , xn) = gi(σ1, σ2, . . . , σn) for a certain poly-
nomial gi ∈ Z[y1, y2, . . . , yn].

Theorem 9. For the special linear Grassmannians we have the following
isomorphisms of A∗(pt)-algebras.

(1) φ1 : A
∗(pt)[b1, b2, ..., bm, e, e

′]
/
J2m,2n

'−→ A∗(SGr(2m, 2n)), where

J2m,2n =
(
ee′, e2 − bm, (−1)n−m+1e′2 + gn−m(b1, b2, . . . , bm),

gn−m+1(b1, b2 . . . , bm), gn−m+2(b1, b2, . . . , bm), . . . ,

gn−1(b1, b2, . . . , bm)
)

and the isomorphism is induced by φ1(bi) = bi(T1), φ1(e) = e(T1) and
φ1(e′) = e(T2).

(2) φ2 : A
∗(pt)[b1, b2, ..., bm, e]

/
J2m,2n+1

'−→ A∗(SGr(2m, 2n+ 1)), where

J2m,2n+1 =
(
e2 − bm, gn−m+1(b1, b2, . . . , bm),

gn−m+2(b1, b2, . . . , bm), . . . , gn(b1, b2, . . . , bm)
)

and the isomorphism is induced by φ2(bi) = bi(T1) and φ2(e) = e(T1).
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Proof. (1) Consider the special linear flag variety p : SF(T1)→ SGr(2m, 2n).
The homomorphism pA is injective by Theorem 6. There is a natural isomor-
phism

SF(T1) ∼= SF(2, 4, . . . , 2m, 2n).

Denote this variety by SF . Proposition 5 yields that there is an injection

pA : A∗(SGr(2m, 2n))→ A∗(pt)[e1, . . . , em, e
′
m]
/
I2m,2n

.

We have pA(e(T1)) = em, p
A(e(T2)) = e′m and by Lemma 12 and multiplica-

tivity of total Borel classes pA(bi(T1)) = σi(e
2
1, e

2
2, . . . , e

2
m). From now on we

omit pA and regard A∗(SGr(2m, 2n)) as a subalgebra of A∗(SF). Lemma 17
shows that J2n,2m ⊂ I2n,2m = J2n,2mA

∗(SF), moreover,
J2n,2m = I2n,2m ∩ A∗(pt)[b1, . . . , bm, e, e

′]

since by Proposition 6 the algebra A∗(pt)[e1, . . . , em, e
′
m] is a free module over

A∗(pt)[b1, . . . , bm, e, e
′].

Hence there exists the announced map

φ1 : A
∗(pt)[b1, b2, ..., bm, e, e

′]
/
J2m,2n

−→ A∗(SGr(2m, 2n))

with φ1(bi) = σi(e
2
1, e

2
2, . . . , e

2
m), φ1(e) = e1e2 . . . em and φ1(e′) = e′m and it is

injective.
Applying Theorem 6 we obtain that the set

B =

{
u1u2 . . . um−1

∣∣∣∣ui =

[
emii , 0 ≤ mi ≤ 2n− 2i
ei+1ei+2 . . . em

}
,

forms a basis of A∗(SF) over A∗(SGr(2m, 2n)). Note that by the same the-
orem A∗(SF) is generated as an A∗(pt)-algebra by e1, e2 . . . , em, e

′
m, thus by

Proposition 6 we know that B spans A∗(SF) over the algebra
Im(φ1) = A∗(pt)[φ1(b1), φ1(b2), . . . , φ1(bm−1), φ1(e), φ1(e′)],

hence Im(φ1) = A∗(SGr(2m, 2n)) and φ1 is surjective.
(2) could be obtained via the similar reasoning. �

Remark 10. It seems that there is no good description for A∗(SGr(2m+1, 2n))
in terms of the Euler and Borel characteristic classes. For instance, consider
the simplest example SGr(1, 2) ∼= A2−{0}. It is isomorphic to the unpointed
motivic sphere S3,2, so A∗(SGr(1, 2)) ∼= A∗(pt) ⊕ A∗−1(pt), but we do not
have an appropriate nontrivial special linear bundle over A∗(A2−{0}) to take
the characteristic class. Another complication comes from the fact that the
grading shift is odd whereas our characteristic classes lie in the even degrees.

Now we turn to the computation of the cohomology rings of the classifying
spaces

BSLn = lim−→
m∈N

SGr(n,m).

The case of BSL2n easily follows from Theorem 9. In order to compute
the cohomology of BSL2n+1 we will use a certain Gysin sequence relating
A∗(BSL2n+1) to A∗(BSL2n).

Recall that A∗ is constructed from a representable cohomology theory. In
this setting we have the following proposition relating the cohomology groups
of a limit space to the limit of the cohomology groups [PPR2, Lemma A.5.10].
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Proposition 7. For any sequence of motivic spaces X1
i1−→ X2

i2−→ X3
i3−→ . . .

and any p we have an exact sequence of abelian groups

0→ lim←−
1Ap−1(Xk)→ Ap(lim−→Xk)→ lim←−A

p(Xk)→ 0.

As usual, the lim1 term vanishes whenever the Mittag-Leffler condition is
satisfied, i.e. if for every i there exists some k such that for every j ≥ k one
has Im(A∗(Xj)→ A∗(Xi)) = Im(A∗(Xk)→ A∗(Xi)).

Consider the sequence of embeddings

. . .→ SGr(2n, 2m+ 1)
i2m+1−−−→ SGr(2n, 2m+ 3)→ . . .

By Theorem 9 we know that iA2m+1 are surjective hence
Ap(BSL2n) ∼= lim←−A

p(SGr(2n, 2m+ 1)) ∼= lim←−A
p(SGr(2n,m)).

The sequence of the tautological special linear bundles T1 over SGr(2n,m)
gives rise to a bundle T over BSL2n. We have a sequence of embeddings of
the Thom spaces

. . .→ Th(T1(2n, 2m+ 1))
j2m+1−−−→ Th(T1(2n, 2m+ 3))→ . . .

where T1(i, j) is the tautological special linear bundle over SGr(i, j). Since
all the considered morphisms T1(2n, k) → T1(2n, l) are inclusions there is
a canonical isomorphism Th(T ) ∼= lim−→T1(2n,m). For every k we have an
isomorphism

A∗−2n(SGr(2n, k))
∪th(T1(2n,k))−−−−−−−−→ A∗(Th(T1(2n, k))),

so jA2m+1 are surjective as well as i2m+1 and
Ap(Th(T )) ∼= lim←−A

p(T1(2n,m)).

Definition 26. Let T be the tautological bundle over BSL2n. Denote by
bi(T ), e(T ) ∈ A∗(BSL2n) and th(T ) ∈ A∗(Th(T )) the elements correspond-
ing to the sequences of the classes of the tautological bundles,

bi(T ) = (. . . , bi(T1(2n,m)), bi(T1(2n,m+ 1)), . . . ),

e(T ) = (. . . , e(T1(2n,m)), e(T1(2n,m+ 1)), . . . ),

th(T ) = (. . . , th(T1(2n,m)), th(T1(2n,m+ 1)), . . . ),

with T1(2n,m) being the tautological special linear bundle over SGr(2n,m).

The above considerations show that we have a Gysin sequence for the tau-
tological bundle over the classifying space BSL2n.

Lemma 19. Let T be the tautological bundle over BSL2n. Then there exists
a long exact sequence

. . .→ A∗−2n(BSL2n)
∪e−→ A∗(BSL2n)

jA−→ A∗(BSL2n−1)
∂−→ . . .

Proof. For the zero section inclusion of motivic spaces BSL2n → T we have
the following long exact sequence.

. . .→ A∗(Th(T )) −→ A∗(T ) −→ A∗(T 0)
∂−→ . . .

The isomorphisms

A∗−2n(SGr(2n, k))
∪th(T1(2n,k))−−−−−−−−→ Th(T1(2n, k)),
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induce an isomorphism A∗−2n(BSL2n)
∪th(T )−−−−→ A∗(Th(T )), so we can substi-

tute A∗−2n(BSL2n) for the first term in the above sequence. Using homotopy
invariance we exchange T for BSL2n. By the definition of e(T ) the first arrow
represents the cup product ∪e(T ).

We have isomorphisms

T 0 ∼= lim−→SGr(1, 2n− 1,m) ∼= lim−→SGr(2n− 1, 1,m).

The sequence of projections

. . . // SGr(2n− 1, 1,m) //

��

SGr(2n− 1, 1,m+ 1) //

��

. . .

. . . // SGr(2n− 1,m+ 1) // SGr(2n− 1,m+ 2) // . . .

induces a morphism T 0 r−→ BSL2n−1. Note that

SGr(2n− 1, 1,m) ∼= T2(2n− 1,m+ 1)0,

and T 0 is an A∞−{0}-bundle over BSL2n−1, so by [MV, Section 4, Proposi-
tion 2.3] r is an isomorphism in the homotopy category and we can substitute
A∗(BSL2n−1) for the third term in the long exact sequence. �

Definition 27. For a graded ring R∗ let R∗ [[t]]h be the homogeneous power
series ring, i.e. a graded ring with

R∗ [[t]]kh =
{∑

ait
i | deg ai + i deg t = k

}
.

Note that R∗ [[t]]h = lim←−R
∗[t]/tn, where the limit is taken in the category of

graded algebras. We set R∗ [[t1, . . . , tn]]h = R∗ [[t1, . . . , tn−1]]h [[tn]]h.

Theorem 10. For deg e = 2n, deg bi = 2i we have isomorphisms

A∗(pt) [[b1, . . . , bn−1, e]]h
'−→ A∗(BSL2n),

A∗(pt) [[b1, . . . , bn]]h
'−→ A∗(BSL2n+1).

Proof. The case of BSL2n follows from Theorem 9 and Proposition 7, since
for the sequence

. . .→ SGr(2n, 2m+ 1)→ SGr(2n, 2m+ 3)→ . . .

the pullbacks are surjective and lim1 vanishes yielding

A∗(BSL2) ∼= lim←−A
∗(SGr(2n, 2m+ 1)) =

= lim←−A
∗(pt)[b1, b2, . . . , bn, e]/J2n,2m+1 = A∗(pt) [[b1, . . . , bn−1, e]]h .

For the odd case consider the Gysin sequence from Lemma 19 for BSL2n+2.
By the above calculations e(T ) is not a zero divisor, so the the map ∪e(T ) is
injective and we have a short exact sequence

0→ A∗−2n−2(BSL2n+2)
∪e(T )−−−→ A∗(BSL2n+2)→ A∗(BSL2n+1)→ 0.

Identifying A∗(BSL2n+2) with the homogeneous power series and killing e we
obtain the desired result. �
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Remark 11. Another way to compute A∗(BSL2n+1) is to use the calculation
for A∗(SGr(2n+ 1, 2m+ 1)) ∼= A∗(SGr(2m− 2n, 2m+ 1)). The Euler classes
are unstable, so the image

Im(A∗(SGr(2n+ 1, 2m+ 3))→ A∗(SGr(2n+ 1, 2m+ 1)))

is generated by the Borel classes bi(T2) and lim1 vanishes. One could express
bi(T2) in terms of bi(T1), obtaining the desired result.
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