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1 History of the problem and description of

our results

1.1 History and formulation of the problem

We consider extremal problems for integral functionals on the BMO space
that is defined on some interval I ⊂ R. First, we introduce some notation.
By I and J we always denote intervals on R. By 〈ϕ〉

J
we denote the average

of a function ϕ over an interval J :

〈ϕ〉
J

def
=

1

|J |

∫
J

ϕ,

where |J | is the length of the interval. We consider the BMO space endowed
with the quadratic norm1:

BMO(I)
def
=
{
ϕ ∈ L1(I) | ‖ϕ‖2

BMO(I)

def
= sup

J⊂I
〈|ϕ− 〈ϕ〉

J
|2〉

J
<∞

}
.

Details on BMO can be found in [2] or [10]. By BMOε(I) we denote the ball
of radius ε in this space:

BMOε(I)
def
=
{
ϕ ∈ BMO(I) | ‖ϕ‖

BMO(I)
≤ ε
}
.

Now we consider several well-known inequalities for functions in BMO(I).
First, there is a double estimate claiming the equivalence of any p-norm
(0<p<∞) and the initial quadratic norm:

cp‖ϕ‖BMO(I)
≤ sup

J∈I
〈|ϕ− 〈ϕ〉

J
|p〉1/p

J
≤ Cp‖ϕ‖BMO(I)

. (1.1)

Second, the weak-form John–Nirenberg inequality claims that the measure of
the set where some function ϕ ∈ BMO(I) deviates from its average by more
than a certain value λ > 0, decreases exponentially in λ:

1

|I|
∣∣{t ∈ I | |ϕ(t)− 〈ϕ〉

I
| ≥ λ

}∣∣ ≤ c1e
−c2λ/‖ϕ‖BMO(I) . (1.2)

And the third inequality can be obtained from the previous one by integra-
tion. It is called the integral John–Nirenberg inequality and may be treated
as the reverse Jensen inequality for functions in BMOε(I) and the exponent.

1We call the expression ‖ϕ‖
BMO(I)

a norm, although we must factorize by the constant
functions in order to obtain a normed space.
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Namely, there exist a number ε0 > 0 and a positive function C(ε), 0 < ε < ε0,
such that

〈eϕ〉
I
≤ C(ε)e〈ϕ〉I (1.3)

for all ϕ ∈ BMOε(I).
There exist various proofs of these inequalities. For example, in Koosis’

book [2], Garnett’s martingale proof is presented. In Stein’s book [10], the
proof, based on the duality of BMO and H1, can be found. We are interested
in sharp constants in inequalities of this kind. One of the methods that are
employed to obtain sharp constants, is called the Bellman function method.
The history of this method can be found, e.g. in [5].

Now, we consider the following Bellman function:

Bε(x1, x2; f)
def
= sup
ϕ∈BMOε(I)

{
〈f ◦ ϕ〉

I
| 〈ϕ〉

I
= x1, 〈ϕ2〉

I
= x2

}
, (1.4)

where f is some function on R (we postpone the discussion of the class that f
may belong to). We often omit f in the notation and merge two variables
into one, i.e. we write Bε(x1, x2), or Bε(x; f), or simply Bε(x), where
x = (x1, x2).

There are two points worth noting. First, Bε does not depend on the
interval I participating in the definition above. Second, if we replace supre-
mum by infimum in (1.4), we will obtain the function −Bε(x1, x2; −f). In
the beginning of Section 2.1, all this will be discussed in detail.

If we set f(u) = |u|p, then after obtaining analytical expressions for
Bε(x; f) and −Bε(x; −f), we will get estimate (1.1) with the sharp con-
stants cp and Cp as a corollary. All this was done in [8]. Setting f(u) =
χ

(−∞,−λ]∪[λ,∞)
(u), we obtain the Bellman function that gives us the sharp con-

stants for the weak John–Nirenberg inequality (see (1.2)). This function was
found in [12]. Finally, setting f(u) = eu, we obtain the Bellman function for
the integral John–Nirenberg inequality (see (1.3)). The analytical expression
for this function was found in [13] and [9]; the sharp constants ε0 = 1 and
C(ε) = e−ε(1− ε)−1 were obtained as a corollary.

In this paper, we construct the function Bε(x1, x2; f) not for a function
f fixed, but for some wide class of functions, which is described in the next
section.

1.2 Description of our results

We will see later that in the formulas for Bε the integrals of the following
expressions participate:

f (r)(t)e±t/ε, r = 0, 1, 2, 3.
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Therefore, the following space is required:

Wε0
def
= C2(R) ∩W 1

3 (R, wε0),

where ε0 > 0 and wε0(t)
def
= e−|t|/ε0 . The space on the right of the intersection

sign is a weighted Sobolev space. Functions in this space, together with their
first three derivatives, are integrable with the weight wε0 . We note that Wε0

is defined as an intersection of a set of functions and a set of equivalence
classes. But this definition becomes reasonable if we read it left to right: if
a function f belongs to Wε0 , then it is twice continuously differentiable and
f ∈ W 1

3 (R, wε0).
Also, we will see that the behavior of Bε depends strongly on the sign

of f ′′′. We introduce a subset WN
ε0
⊂ Wε0 of functions we deal with. Any

function of this class has 2N + 1 points

−∞ ≤ c0 < v1 < c1 < v2 < . . . < vN < cN ≤ +∞

on the extended real line such that

1) f ′′′ > 0 a.e. on (vk, ck) and on (−∞, c0). Also, f ′′′ < 0 a.e. on (ck, vk+1)
and on (cN ,∞);

2) |ck − vj| ≥ 2ε0.

We build the function Bε(x; f) for f ∈WN
ε0

and ε < ε0.
It is worth mentioning that not all the functions listed in the previous

section belong to WN
ε0

or even to Wε0 . For example, the function | · |p with
p < 2 and the function χ

(−∞,−λ]∪[λ,∞)
(·) are not smooth enough (although, if

p > 2, the function |·|p satisfies all the conditions required). Moreover, by the
first point of our assumptions, f ′′′ 6= 0 a.e., so WN

ε0
does not contain functions

quadratic on intervals of positive measure. All the restrictions imposed on f
are technical, and we will lift most of them in future papers (see Chapter 7).

Next, consider the parabolic strip (see Figure 1):

Ωε
def
=
{

(x1, x2) ∈ R2 | x2
1 ≤ x2 ≤ x2

1 + ε2
}
. (1.5)

It is easy to prove (and this will be done in the beginning of the next
chapter) that Ωε is the domain of Bε (in the sense that Ωε consists of all the
points (x1, x2) such that the supremum in (1.4) is taken over a nonempty set
for them), and that Bε satisfies the boundary condition Bε(x1, x

2
1) = f(x1)

on the lower parabola.
We will also see that Bε is locally concave, i.e. concave on every convex

subset of Ωε. We give the definition of the local concavity in another form
that is more suitable for our purposes.
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x1

x2

x2 = x2
1

x2 = x2
1 + ε2

Ωε

Figure 1: The parabolic strip Ωε.

Definition 1.1. A function G, defined on some set Ω ⊂ Rn, is called locally
concave in Ω if the inequality

G(α−x
− + α+x

+) ≥ α−G(x−) + α+G(x+)

is fulfilled for every straight-line segment [x−, x+] ⊂ Ω and every pair of
numbers α−, α+ ≥ 0 such that α− + α+ = 1.

By Λε,f we denote the class of continuous functions that are locally con-
cave in Ωε and satisfy the boundary condition mentioned above:

Λε,f
def
=
{
G ∈ C(Ωε) | G is locally concave; G(u, u2) = f(u) ∀u ∈ R

}
.

Now we are ready to describe our results.
Suppose f ∈WN

ε0
, where ε0 > 0 and N ∈ Z+.

(a) For 0 < ε < ε0, the function Bε(x; f) belongs to Λε,f . Moreover,

Bε(x; f) = inf
G∈Λε,f

G(x);

(b) For each ε, 0 < ε < ε0, we construct an expression for Bε in terms
of f .

Statement (a) means that the problem of finding the Bellman function Bε

can be reformulated in geometric terms: it is equivalent to the problem of

6



finding the minimal locally concave function in Ωε that satisfies a certain
boundary condition. We believe that this remains true in a more general
setting without any assumptions about the sign of f ′′′. Unfortunately, we do
not know how to prove the local concavity of Bε directly. The fact that Bε is
locally concave will follow from an explicit expression for this function (and
the restrictions on f ′′′ are required in order to find this expression). In the
next chapter, we will discuss this problem in more detail.

Concerning (b), by an expression in terms of f we mean a rather compli-
cated construction, which consists of various integral and differential trans-
formations of f . Roots of some equations that cannot be solved in elemen-
tary functions also participate. We are going to find such an expression
employing the vast theory, which is continued to be developed in this article.
Using this theory, we will solve the homogeneous Monge–Ampère equation
Bx1x1Bx2x2 − B2

x1x2
= 0 (this identity, which means that the Hessian d2B

dx2
is

degenerate, allows us to consider B as a Bellman function candidate). After
that we will find functions on which the supremum in the definition of the
Bellman function is attained (after we get such functions, we will be able to
prove that the candidate B coincides with the true Bellman function). The
development of these ideas is the main purpose of the paper; statements (a)
and (b) are corollaries of our results.

2 General principles

Throughout this chapter, we assume that 0 < ε < ε0, f ∈ Wε0 , and Bε

is the Bellman function defined by (1.4). In Section 2.1, we will prove that
the domain of Bε is Ωε and obtain the boundary condition for Bε on the
lower parabola x2 = x2

1. We will also explain why the assumption of the
local concavity of Bε is reasonable (but the fact that Bε is, indeed, locally
concave will become clear only after we find an explicit expression for Bε;
for this, we will employ the additional restriction f ∈WN

ε0
). In Section 2.2,

we will prove that every locally concave function with the same domain and
boundary condition as Bε, is pointwise greater than Bε. Thus, we must find
a minimal locally concave function on Ωε satisfying some boundary condition.
In Section 2.3, we will describe a general method of finding such functions
that is based on solving a homogeneous Monge–Ampère equation. A solution
of such an equation may be considered as a Bellman function candidate. But
to ensure that this candidate is, indeed, the Bellman function required, we
must build for each point x ∈ Ωε an optimizer. An optimizer is a function
ϕ ∈ BMOε(I) such that the supremum from definition (1.4) of Bε is attained
on it. In Section 2.4, we will present some general considerations on how to
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build optimizers.

2.1 Main properties of function Bε

Preliminaries. First, using linear transformation of one interval into an-
other, we obtain the following fact.

Remark 2.1. The function Bε does not depend on the interval I participating
in its definition.

Second, if we need the lower estimate, we can replace supremum by infi-
mum in (1.4). Instead of this, we can solve the supremum problem for the
boundary function −f .

Remark 2.2. The function −Bε(x1, x2; −f) coincides with

Bmin
ε (x1, x2; f)

def
= inf
ϕ∈BMOε(I)

{
〈f ◦ ϕ〉

I
| 〈ϕ〉

I
= x1, 〈ϕ2〉

I
= x2

}
.

Third, if two extremal problems correspond to boundary functions f such
that their difference is a quadratic polynomial, then this problems are, in fact,
equivalent. Namely, the definition of the Bellman function and the linearity
of averages imply the following fact.

Remark 2.3. For any real numbers a, b, c, and d, we have

Bε(x1, x2; af(t) + bt2 + ct+ d) = |a|Bε(x1, x2; (sign a)f(t)) + bx2 + cx1 + d.

Thus, if we know the Bellman function for (sign a)f(t), then we can easily
construct it for af(t) + bt2 + ct + d. Similarly, we can make a linear change
of variable in the boundary condition.

Remark 2.4. For any real numbers α and β, we have

Bε(x1, x2; f(αt+ β)) = B|α|ε(αx1 + β, α2x2 + 2αβx1 + β2; f(t)).

The domain of Bε and the boundary condition.

Statement 2.5. The function Bε(x; f) has the following properties :

(i) its domain is the parabolic strip Ωε defined by the formula (1.5), i.e., the
set over which the supremum in (1.4) is taken, is non-empty for those
and only those x = (x1, x2) that lie in Ωε (however, the function Bε

can take the value +∞ there);

(ii) the boundary condition Bε(x1, x
2
1) = f(x1) is satisfied.

8



Proof. Consider statement (i). It is easy to see that the estimate x2
1 ≤ x2 is

fulfilled due to the Cauchy–Schwarz inequality and the estimate x2 ≤ x2
1 + ε2

follows from the requirement ϕ ∈ BMOε(I). Therefore, Ωε contains the do-
main of Bε. On the other hand, if the estimate x2

1 ≤ x2 ≤ x2
1 + ε2 is fulfilled,

we can easily construct a function ϕ ∈ BMOε(I) whose average equals x1 and
square deviation equals

√
x2 − x2

1. For example, we may take the function

ϕ(t) =

{
x1 +

√
x2 − x2

1, t ∈ I−;

x1 −
√
x2 − x2

1, t ∈ I+,

where I− and I+ are the left and right halves of I, respectively. This means
that Ωε is contained in the domain of Bε.

Statement (ii) is trivial. Indeed, the identity x2 = x2
1 means that all the

functions ϕ over which the supremum is taken, do not deviate from their
average x1. Therefore, the set of such functions consists of a single element
ϕ(t) ≡ x1. This implies the condition required.

Local concavity. Now we discuss the concavity of Bε. Let x± ∈ Ωε,
and let α± be numbers such that α± ≥ 0, α− + α+ = 1, and the point
α−x− + α+x

+ gets into Ωε. We split I into two subintervals I− and I+ such
that |I±| = α±|I|. Further, we choose two functions ϕ± ∈ BMOε(I±) such

that
(
〈ϕ±〉I± , 〈ϕ

2
±〉I±

)
= x± and these functions almost realize the supremum

on the corresponding intervals. The latter means that

〈f(ϕ±)〉
I±
≥ Bε(x

±)− η,

where η > 0 is a small value. Consider the function

ϕ(t) =

{
ϕ−(t), t ∈ I−;

ϕ+(t), t ∈ I+.

First, since the point
(
〈ϕ〉

I
, 〈ϕ2〉

I

)
= α−x− + α+x

+ gets into Ωε, we have
〈ϕ2〉

I
− 〈ϕ〉2

I
≤ ε2. Second, it is clear that ϕ ∈ BMOε(I−) ∩ BMOε(I+).

However, these conditions are not sufficient for the function ϕ to get into
BMOε(I) (it is worth mentioning that this problem does not arise in the case
of the dyadic BMO space; see [9]). If we could for every η choose functions
ϕ± such that their concatenation ϕ gets into BMOε(I), then the following
inequalities would be fulfilled:

Bε(α−x
− + α+x

+) ≥ 〈f(ϕ)〉
I

= α−〈f(ϕ−)〉
I−

+ α+〈f(ϕ+)〉
I+

≥ α−Bε(x
−) + α+Bε(x

+)− η.

9



Letting η → 0, we would get the concavity of Bε. But in the continuous
case the method described above does not work, because ϕ may lay outside
BMOε(I). It turns out that the function Bε is only locally concave. But this
will be clear only after we construct an explicit expression for Bε. Neverthe-
less, the heuristic method that we will use to build a Bellman candidate, is
based on the fact that the local concavity condition is satisfied:

(iii) the function Bε is locally concave in the parabolic strip Ωε.

2.2 Locally concave majorants

In this section, we prove that every function in C(Ωε) with properties (ii) and
(iii) (we recall that the set of such functions is denoted by Λε,f ) majorizes Bε.
Namely, we verify the following statement.

Statement 2.6. Suppose 0 < ε < ε0, f ∈ Wε0 , and G ∈ Λε,f . Then
Bε(x; f) ≤ G(x) for all x ∈ Ωε.

In order to prove this statement, we need some preparation.

Auxiliary lemmas. First, we need the following geometric lemma, which
was proved both in [13] and [9].

Lemma 2.7. Suppose ε1 > ε. Then for any interval I ⊂ R and any func-
tion ϕ ∈ BMOε(I) there exists a partition I = I− ∪ I+ such that the line
segment with the endpoints x± =

(
〈ϕ〉

I±
, 〈ϕ2〉

I±

)
lies in Ωε1 entirely. More-

over, the parameters α± = |I±|/|I| can be chosen to be separated from 0 and
1 uniformly in I and ϕ.

We also need the following statement about truncations of functions in
BMO(I).

Lemma 2.8. Let ϕ ∈ BMO(I), c, d ∈ R, and c < d. Let ϕc,d be the trunca-
tion of ϕ:

ϕc,d(t)
def
=


d, ϕ(t) > d;

ϕ(t), c ≤ ϕ(t) ≤ d;

c, ϕ(t) < c.

Then 〈ϕ2
c,d〉J − 〈ϕc,d〉2J ≤ 〈ϕ

2〉
J
− 〈ϕ〉2

J
for every interval J ⊂ I.

A proof can be found in [8], it is also contained implicitly in [9]. This
lemma immediately implies the following fact.

Corollary 2.9. If ϕ ∈ BMOε(I), then ϕc,d ∈ BMOε(I).

10



Now we discuss how a function f ∈ Wε0 and its first two derivatives
behave at infinity.

Lemma 2.10. If f ∈Wε0 , then the following limit relations are fulfilled :

f (r)(u)e−|u|/ε0 → 0 as u→ ±∞ for r = 0, 1, 2. (2.1)

Proof.

f ′′(u)e−|u|/ε0 − f ′′(0) =

u∫
0

(
f ′′(t)e−|t|/ε0

)′
dt

=

u∫
0

f ′′′(t)e−|t|/ε0 dt− ε−1
0 signu

u∫
0

f ′′(t)e−|t|/ε0 dt.

Since f ∈Wε0 , we have the existence of the limits

lim
u→±∞

f ′′(u)e−|u|/ε0 .

But if such limits exist, they must be equal to zero (because f ′′(u)e−|u|/ε0 is
integrable). Similar reasoning for f ′ and f gives (2.1).

We are ready to prove Statement 2.6. It is worth noting that statements
of this kind are a commonplace of the theory and they can be found in almost
every article on the Bellman function method in analysis (a classical example
is the paper [4]).

Proof of Statement 2.6. Let 0 < τ < 1. Consider the function

Gτ (x1, x2)
def
= G(τx1, τ

2x2).

We also define fτ (x1)
def
= f(τx1). It is easily seen that Gτ is continuous and

locally concave in Ωε/τ . This function also satisfies the boundary condition

Gτ (x1, x
2
1) = fτ (x1).

Next, consider a point x ∈ Ωε. Fix a function ϕ ∈ BMOε(I) such that
x =

(
〈ϕ〉

I
, 〈ϕ2〉

I

)
. By xσ we denote the Bellman point generated by the same

function ϕ and a subinterval σ ⊂ I, i.e. xσ
def
=
(
〈ϕ〉σ , 〈ϕ2〉σ

)
. By Lemma 2.7,

there exists a partition I = I−∪I+ such that the segment with the endpoints

11



xI− and xI+ lies in Ωε/τ entirely. Note that x = xI = α−xI− + α+x
I+ , where

α± = |I±|/|I|. Using the local concavity of Gτ , we get the inequality

|I|Gτ (x) ≥ |I−|Gτ

(
xI−
)

+ |I+|Gτ

(
xI+
)
. (2.2)

We repeat the procedure described above for each subinterval I± (treating ϕ
as a function on the corresponding subinterval), after that we repeat it again
for each of four subintervals obtained in the previous step, and so on. After
n steps we have a collection Dn of 2n subintervals that divide I. Using the
local concavity of Gτ in each step, we get the estimate

|I|Gτ (x) ≥
∑
σ∈Dn

|σ|Gτ (x
σ) =

∫
I

Gτ

(
xn(t)

)
dt,

where xn(t) is the step function taking the value xσ on each interval σ ∈ Dn
2.

Since α± can be chosen to be separated from 0 and 1 uniformly, the lengths of
the intervals tend to zero as n tends to infinity: maxσ∈Dn |σ| → 0 as n→∞.
By the Lebesgue differentiation theorem, this implies that

xn(t)→
(
ϕ(t), ϕ2(t)

)
for almost all t ∈ I. Suppose for a while that ϕ ∈ L∞(I). Then the values of
the functions xn(t) lie in some compact subset of Ωε. Therefore, since Gτ (x)
is continuous, the sequence of functions Gτ

(
xn(t)

)
is uniformly bounded.

Passing to the limit and using the boundary condition, we get

|I|Gτ (x) ≥
∫
I

Gτ

(
ϕ(t), ϕ2(t)

)
dt =

∫
I

fτ
(
ϕ(t)

)
dt.

Now we lift the boundedness of ϕ and pass to the limit in τ . Consider

the truncations ϕm(t)
def
= ϕ−m,m(t) (the definition see in Lemma 5.5). By

Lemma 2.8, they lie in the same ball BMOε(I) as ϕ. Thus, since the functions
ϕm are bounded, the estimate proved earlier is true for them:

|I|Gτ

(
〈ϕm〉I , 〈ϕ

2
m〉I
)
≥
∫
I

fτ
(
ϕm(t)

)
dt.

Since G is continuous, the left part tends to G(x) as m→∞ and τ → 1−.
Thus, it remains to pass to the corresponding limits in the right part of
the inequality. The continuity of f implies that the integrands converge to

2The procedure just described is often called the Bellman induction.
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f
(
ϕ(t)

)
pointwise. Therefore, in order to establish the convergence of the

integrals, it remains to find an integrable majorant. Due to relation (2.1) for
r = 0 and the continuity of f , the estimate |f(s)| ≤ Ce|s|/ε0 is fulfilled. Then
we have∣∣fτ(ϕm(t)

)∣∣ ≤ C exp τ |ϕm(t)|
ε0

≤ C exp |ϕ(t)|
ε0
≤ C

(
exp ϕ(t)

ε0
+ exp −ϕ(t)

ε0

)
.

The last expression is integrable by the integral John–Nirenberg inequality
(see [13] or [9]), because ε < ε0, and both ϕ and −ϕ are in BMOε(I). Passing
to the limits, we finally get G(x) ≥ Bε(x).

2.3 Monge–Ampère equation

Let B be the minimal function in Λε,f . Properties (i) and (ii), together with
property (iii) being assumed and Statement 2.6, imply that we may treat B
as a candidate for the Bellman function Bε. In this section, we present some
reasoning (not intended to be rigorous) that allows us to reduce the problem
of finding such a function to solving a certain partial differential equation
(homogeneous Monge–Ampère equation).

As we will see later, for each point x ∈ Ωε, there exists a function
ϕ ∈ BMOε(I) that realizes the supremum for the point x in the Bellman
function definition (see (1.4)), i.e. x =

(
〈ϕ〉

I
, 〈ϕ2〉

I

)
and Bε(x) = 〈f(ϕ)〉

I
.

If the functions Gτ from Statement 2.6 approximate Bε, then for the opti-
mizer ϕ there exists a partition of I such that in (2.2) the equality is almost
attained. In view of the local concavity of Gτ , this means that this func-
tion is almost linear on the segment

[
xI− , xI+

]
⊂ Ωε/τ . This yields that our

candidate B must be linear along some vector Θx, i.e. its second derivative
along Θx vanishes at x:

∂2B

∂Θ2
x

=

(
d2B

dx2
Θx,Θx

)
= 0, (2.3)

where
d2B

dx2
=

(
Bx1x1 Bx1x2

Bx2x1 Bx2x2

)
(here all the functions are evaluated at x). On the other hand, since the func-
tion B is locally concave, it follows that the matrix of its second derivatives
is negative semidefinite:

d2B

dx2
≤ 0.

Next, by virtue of (2.3), it cannot be strictly negative definite, so

det

(
d2B

dx2

)
= Bx1x1Bx2x2 −B2

x1x2
= 0. (2.4)
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This is the homogeneous Monge–Ampère equation for B. Besides (2.4),
the boundary condition B(x1, x

2
1) = f(x1) and the inequalities Bx1x1 ≤ 0,

Bx2x2 ≤ 0 must be fulfilled.
In order to solve equation (2.4), we will use the following consideration:

the integral curves of the vector field Θx are straight lines and, what is more,
all the partial derivatives of B are constant along them. We formulate this
principle in the following statement, which has been proved, for example,
in [15].

Statement 2.11. Suppose Ω is a domain in R2, and G ∈ C2(Ω) is a function
satisfying the homogeneous Monge–Ampère equation on Ω:

Gx1x1Gx2x2 −G2
x1x2

= 0.

Let
t1 = Gx1 , t2 = Gx2 , and t0 = G− t1x1 − t2x2.

Suppose Gx1x1 6= 0 or Gx2x2 6= 0 at every point of Ω. Then the functions
t1, t2, and t0 are constant along the integral curves of the vector field that
annihilates the quadratic form d2G

dx2
on Ω. The integral curves mentioned above

(the extremals) are segments of the straight lines defined by the equation

x1dt1 + x2dt2 + dt0 = 0. (2.5)

Graphs of solutions of the homogeneous Monge–Ampère equation are
called developable surfaces. All the properties of such solutions can be for-
mulated in geometric terms. For example, the theorem presented above states
that a developable surface is ruled. Concerning geometric interpretation, see,
e.g. [6].

In view of Statement 2.11, we can assume that our domain Ωε can be split
into subdomains of two kinds: domains where d2G

dx2
= 0 (B is a linear function

there) and domains where dim Ker d2G
dx2

= 1. Latter domains are foliated by
straight-line segments such that the partial derivatives of B are constant
along them. We will look for our Bellman function among the functions B
corresponding to such foliations. The following definition fixes the notion of
a Bellman candidate.

Definition 2.12. Consider a subdomain Ω̃ ⊂ Ωε and a finite collection of
pairwise disjoint subdomains3 Ω̃1, . . . , Ω̃m ⊂ Ω̃ whose union is Ω̃. Consider
some function B ∈ C(Ω̃) that is locally concave in Ω̃ and satisfies the bound-

ary condition B(x1, x
2
1) = f(x1). Suppose B ∈ C1(Ω̃i), i = 1 . . .m, and

3It is worth noting that here the notion of a domain has a wider meaning than usually:
a domain is the union of a connected open set and any part of its boundary.
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those subdomains Ω̃i where B is not linear, are foliated by non-intersecting
straight-line segments such that the partial derivatives of B are constant
along them. Then we say that B is a Bellman candidate in Ω̃.

From the above, it does not follow that such a function B solves the
Monge–Ampère equation. However, all the Bellman candidates constructed
below are C2-smooth in each of the corresponding domains Ω̃1, . . . , Ω̃m. Thus,
since B is linear along the extremals, Monge–Ampère equation (2.4) is ful-

filled in each domain Ω̃i for such a candidate.
Another useful observation, helping us to construct Bellman candidates, is

that the extremals, intersecting the upper boundary of Ωε, must be tangents
to it (see Principle 2 on the page 8 of [8]).

All of the above allows us to believe that our Bellman function can be
found among the functions described in Definition 2.12. If we find some Bell-
man candidate B on the whole domain Ωε, the inequality Bε ≤ B will follow
immediately from Statement 2.6. In order to verify the converse estimate
Bε ≥ B, we will construct, for each point x ∈ Ωε, a function ϕ ∈ BMOε(I)
such that x =

(
〈ϕ〉

I
, 〈ϕ2〉

I

)
and B(x) = 〈f(ϕ)〉

I
. Such functions are called

optimizers. General considerations on the construction of optimizers are
stated in the next section.

2.4 Optimizers

First, we fix the notion an optimizer.

Definition 2.13. Let B be a Bellman candidate in the whole domain Ωε.
A function ϕ defined on some interval I is called an optimizer for a point
x ∈ Ωε if the following conditions are satisfied:

(1) ϕ ∈ BMOε(I);

(2)
(
〈ϕ〉

I
, 〈ϕ2〉

I

)
= x;

(3) 〈f(ϕ)〉
I

= B(x).

The first two properties mean that ϕ is one of the functions over which
the supremum is taken in definition (1.4) of Bε (we will call such functions
test functions). In view of Statement 2.6, the third property guarantees that
the test function ϕ realizes this supremum. Therefore, a Bellman candidate
for which an optimizer can be constructed in each point x ∈ Ωε, coincides
with Bε.

We notice that it suffices to consider only non-decreasing optimizers. In-
deed, if we replace a function by its increasing rearrangement, the BMO-norm
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does not increase (an increasing rearrangement of a function ϕ is a non-
decreasing function ϕ∗ such that the measure of the set {t ∈ I | ϕ(t) > λ}
is equal to the measure of the set {t ∈ I | ϕ∗(t) > λ} for any λ ∈ R).
This statement was proved in [1]. In [3], it was employed for the calculation
of the sharp constant c2 in John–Nirenberg inequality (1.2). It is also clear
that averages of the form 〈h(ϕ)〉

I
does not change when ϕ is replaced by its

increasing rearrangement. All this implies that the supremum in (1.4) may
be taken over the set of the non-decreasing functions satisfying the same
conditions.

We will construct optimizers using the notion of delivery curves. The
following reasoning, which is not intended to be rigorous, will lead us to the
corresponding definition. Consider a non-decreasing optimizer ϕ. For it, each
inequality in the Bellman induction (see the proof of Statement 2.6) turns
into an equality. Thus, we must split the interval in such a way that the
corresponding points move along the extremals that foliate the subdomains
where the Bellman function is not linear (inside domains of the linearity,
every segment is an extremal). If at each step of the Bellman induction we
manage to choose an infinitesimal partition, i.e. cut off an arbitrarily small
part from one side of the interval, then we get some curve inside the domain
(the coordinates of its points are, in fact, the averages of ϕ and ϕ2 over the
larger of two intervals that are obtained after each cutting). If we cut off from
the right side of the interval, then a resulting curve is called a left delivery
curve (since we consider an increasing test function, this curve lays on the
left of the point at which we begin the induction). This heuristic reasoning
leads us to the following rigorous definition.

Definition 2.14. Suppose ϕ is some test function on I = [l, r]. A curve γ is
called a left delivery curve if it is defined by the formula

γ(s) =
(
〈ϕ〉

[l,s]
, 〈ϕ2〉

[l,s]

)
, s ∈ (l, r], (2.6)

and for all s ∈ (l, r] the following equation is fulfilled:

B(γ(s)) = 〈f(ϕ)〉
[l,s]
. (2.7)

Cutting off from the left side of the interval, we come to the notion of a
right delivery curve (it lies on the right of the initial point). The correspond-
ing definition is symmetric to the definition of a left delivery curve.

Definition 2.15. Suppose ϕ is some test function on I = [l, r]. A curve γ
is called a right delivery curve if it is defined by the formula

γ(s) =
(
〈ϕ〉

[s,r]
, 〈ϕ2〉

[s,r]

)
, s ∈ [l, r), (2.8)
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and for all s ∈ [l, r) the following equation is fulfilled:

B(γ(s)) = 〈f(ϕ)〉
[s,r]
. (2.9)

Definitions 2.14 and 2.15 postulate that the restrictions ϕ|[l,s] are opti-
mizers for the corresponding points γ(s) of the left delivery curve (which
lies, of course, in Ωε entirely), and the restrictions ϕ|[s,r] are optimizers for
the points γ(s) of the right delivery curve. Therefore, if we build a delivery
curve, we automatically obtain the optimizers for all the points of this curve.

According to the procedure described above, delivery curves run along
extremals. Thus, they can consist of some parts of extremals and arcs of the
upper parabola. Also, if we take only non-decreasing test functions, then left
delivery curves will run from left to right and right delivery curves will run
from right to left (for right delivery curves, we assume that the “time” s runs
backwards, i.e. from r to l).

We will build optimizers for some Bellman candidate B as follows. We
will draw various curves along the extremals corresponding to our candidate.
After that, we will construct functions ϕ ∈ L1(I) that generate these curves
in the sense of (2.6) or (2.8). Next, we will verify that the obtained functions
belong to BMOε(I) and satisfy (2.7) or (2.9). The condition ϕ ∈ BMOε(I)
can be derived from general geometric considerations. The fact is that all
our delivery curves turn out to be convex, because they are graphs of some
convex function. In addition, their curvatures will not be too large: as a rule,
any tangent to such a curve will lie under the upper boundary of Ωε. These
properties can be explained by the fact that these curves must run along the
upper parabola or straight extremals, which intersect the upper boundary
tangentially. It turns out that if some function ϕ ∈ L1(I) generates a curve
with the properties described above, then ϕ ∈ BMOε(I). We formulate
the corresponding statement in the local form, which is more convenient for
further applications.

Lemma 2.16. Let ϕ be an integrable function on I = [l, r] and let γ be the
curve generated by this function in the sense of (2.6). Suppose γ lies in Ωε

entirely, coincides with the graph of a convex function, and is differentiable
in some point b ∈ I. If the tangent to γ at the point γ(b) lies below the
upper boundary of Ωε, then all the Bellman points x[a,b] =

(
〈ϕ〉

[a,b]
, 〈ϕ2〉

[a,b]

)
,

l ≤ a < b, belong to Ωε.
If the curve γ is generated by ϕ in the sense of (2.8), then the Bellman

point x[a,b] is in Ωε provided the tangent to γ at the point γ(a) lies below the
upper parabola.

Proof. We prove only the first half of the lemma, the proof of the second is
similar. Since the curve γ is convex, the point γ(a) must lie above the tangent
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to γ at the point γ(b). The points γ(a), x[a,b], and γ(b) lie on one line and the
last lies between the first two, because it is their convex combination. Thus,
the point x[a,b] must lie below the tangent, and therefore, below the upper
boundary of Ωε. On the other hand, by the Cauchy–Schwartz inequality, the
point x[a,b] lies above the lower boundary.

x1

x2

x2 = x2
1x2 = x2

1 + ε2

γ(b)

γ(a)

γ

x[a,b]

Figure 2: Illustration to the proof of Lemma 2.16.

As we have already mentioned, the symmetric situation when γ and ϕ
satisfy relation (2.8), can be treated in a similar way.

3 Homogeneous families of extremals

As already noted, an extremal intersecting the upper parabola must touch it.
In this chapter, we assume that some subdomain of Ωε is foliated by extremals
that are tangential to the upper boundary, and look for a Bellman candidate
in such a subdomain. In Section 3.1, we will see how such extremals must be
arranged and how to calculate a Bellman candidate B corresponding to them
(up to some constant of integration). In Section 3.2, we will consider the case
when subdomains foliated by tangents are not bounded from one side. In
such a situation, we will be able to specify the formula for our candidate B,
i.e. to get rid of the integration constant mentioned above. It is worth noting
that all the arguments in Sections 3.1 and 3.2 are, in fact, a repetition of the
corresponding arguments in [8]. We state them here for completeness. In
Section 3.3, using the approach described in Section 2.4, we will find delivery
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curves and optimizers in the domains being considered. It will occur that the
theory described in Sections 3.1, 3.2, and 3.3 is sufficient to obtain Bε(x; f)
for f ∈ W0

ε0
with c0 = ±∞, i.e. when the sign of f ′′′ does not change (the

case f ′′′ < 0 corresponds to c0 = −∞, the case f ′′′ > 0 corresponds to
c0 = +∞). The corresponding theorems are stated in Section 3.4.

3.1 Family of tangents to the upper boundary

Consider the tangent to the upper parabola at a point (w,w2 + ε2). Its
segment lying in Ωε is given by the following relation:

x2 = 2wx1 + ε2 − w2, for x1 ∈ [w − ε, w + ε]. (3.1)

Consider some hypothetical family of extremals (they are segments of straight
lines) such that each of them is a tangent to the upper parabola. Parameterize
this family by the first coordinate of tangency points w ∈ (w1, w2). If the
corresponding Bellman candidate B is not linear in both variables, then an
extremal cannot contain the whole segment (3.1). Moreover, a tangency point
(w,w2 + ε2) is not an inner point of an extremal, otherwise such an extremal
intersects with others. This can also be seen from convexity provided the
function B is twice differentiable. Indeed, since the function t2 = Bx2 is
constant along the extremals, it may be treated as a function of w. Thus,
Bx2x2 = t′2(w)wx2 . Further, using equation (3.1), we get

wx2 =
1

2(x1 − w)
.

Fixing w, we see that on the corresponding extremal the sign of Bx2x2 changes
in a neighborhood of the point x1 = w. But this contradicts the condition
Bx2x2 ≤ 0.

Thus, each extremal line of our family lies either on the right of the point
(w,w2 + ε2) or on the left of it. Consider two families of extremals. The first
consists of segments of tangents to the upper parabola that lie on the right
of their tangency points. The second consists of those segments that lie on
the left of the tangency points. We make the substitution w = u − ε in the
first case and w = u+ ε in the second, i.e. we parameterize the extremals by
the first coordinate u of those points where they intersect the lower parabola.
The parameter u runs over some interval (u1, u2) = (w1±ε, w2±ε). Therefore,
our families of the right and left tangents are described, respectively, by the
following equations:

(R) x2 − 2(u− ε)x1 + u2 − 2uε = 0, u ∈ (u1, u2), x1 ∈ [u− ε, u];
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(L) x2 − 2(u+ ε)x1 + u2 + 2uε = 0, u ∈ (u1, u2), x1 ∈ [u, u+ ε].

We look for a Bellman candidate on subdomains of Ωε that are foliated by
families (R) or (L). We define such subdomains by ΩR(u1, u2) and ΩL(u1, u2),
respectively (see Figures 3 and 4).

x1

x2

x2 = x2
1

x2 = x2
1 + ε2

U1
U2

U

W

U = (u, u2)

W = (w,w2 + ε2),

w = u− ε.

ΩR

Figure 3: A domain ΩR with the right tangents.

Expressing u in terms of x1 and x2 for the tangents (R) and (L), we
obtain, respectively, the following relations:

u = uR(x1, x2) = x1 +
(
ε−

√
ε2 − (x2 − x2

1)
)
, (3.2)

u = uL(x1, x2) = x1 −
(
ε−

√
ε2 − (x2 − x2

1)
)
. (3.3)

From now on, we establish the following rule for our notation. Any point
on the lower boundary is denoted by a capital Latin letter and the first
coordinate of this point is denoted by the corresponding small letter. For
example, we write U for (u, u2) (see Figures 3 and 4).

Let B be a Bellman candidate on ΩR or ΩL. Since the function B
must be linear on the linear extremals and satisfy the boundary condition
B(U) = f(u), it follows that B can be written as

B(x1, x2) = m(u)(x1 − u) + f(u). (3.4)
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x1

x2

x2 = x2
1

x2 = x2
1 + ε2

U1
U2

U

W

U = (u, u2),

W = (w,w2 + ε2),

w = u+ ε.

ΩL

Figure 4: A domain ΩL with the left tangents.

Consider case (R). Using representation (3.4) and the equation

ux2 =
1

2(x1 − u+ ε)
, (3.5)

by direct calculation, we obtain the following identity:

t2 = Bx2 =
m′(u)

2
− εm′(u) +m(u)− f ′(u)

2(x1 − u+ ε)
.

If u is fixed, the function t2 must be constant. Therefore,

εm′(u) +m(u)− f ′(u) = 0; (3.6)

t2 =
m′(u)

2
. (3.7)

All the solutions of equation (3.6) are of the form

m
R
(u) = e−u/ε

(
A+ ε−1

u∫
u1

f ′(t)et/ε dt

)
, (3.8)

where A is an integration constant. It is clear that

A = eu1/εm
R
(u1). (3.9)

Substituting solution (3.8) into representation (3.4) and expressing u in terms
of x by (3.2), we obtain a family of functions (we still have a free parameter
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A) whose derivatives are constant along extremals (R) foliating ΩR(u1, u2).
We denote such functions by BR(x; u1, u2).

Next, by virtue of (3.7), we can write

BR
x2x2

= t′2(u)ux2 =
m′′

R
(u)ux2
2

.

Using this equation and identity (3.5), we see that the condition BR
x2x2
≤ 0

is equivalent to m′′
R
(u) ≤ 0, u ∈ (u1, u2). We recall that this condition is

necessary for the local concavity of BR(x; u1, u2). But in the situation be-
ing considered, this condition is also sufficient for the local concavity of the
candidate. Indeed, if it is satisfied, then the function BR is concave along
the direction x2 and linear along an extremal. Since these directions are
non-collinear, it follows that BR is locally concave.

Now we obtain a formula for m′′
R
. Differentiating equation (3.6) twice and

solving it with respect to m′′, we get

m′′
R
(u) = e(u1−u)/εm′′

R
(u1) + ε−1e−u/ε

u∫
u1

f ′′′(t)et/ε dt. (3.10)

Reasoning for extremals (L) in a similar way, we get the following rela-
tions:

−εm′(u) +m(u)− f ′(u) = 0; (3.11)

t2 = Bx2 =
m′(u)

2
. (3.12)

All the solutions of equation (3.11) have the following form:

m
L
(u) = eu/ε

(
A+ ε−1

u2∫
u

f ′(t)e−t/ε dt

)
, (3.13)

where
A = e−u2/εm

L
(u2).

Settingm(u) = m
L
(u) in (3.4) and expressing u in terms of x by relation (3.3),

we obtain the function B(x) = BL(x; u1, u2) on ΩL(u1, u2) with the partial
derivatives that are constant along extremals (L). The local concavity of the
function BL is equivalent to the condition m′′

L
(u) ≥ 0 for all u ∈ (u1, u2), and

m′′
L
(u) satisfies

m′′
L
(u) = e(u−u2)/εm′′

L
(u2) + ε−1eu/ε

u2∫
u

f ′′′(t)e−t/ε dt. (3.14)

We summarize this section.
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Proposition 3.1. Suppose the subdomain ΩR(u1, u2) ⊂ Ωε is foliated by
extremals (R) entirely. Then a Bellman candidate in this subdomain has the
form

BR(x; u1, u2) = m
R
(u)(x1 − u) + f(u), (3.15)

where m
R
(u) satisfies (3.8) and u = uR(x1, x2) can be calculated by (3.2).

Besides, the function m′′
R
(u) must satisfy m′′

R
(u) ≤ 0, u ∈ (u1, u2).

If the subdomain ΩL(u1, u2) ⊂ Ωε is foliated by extremals (L) entirely,
then all the Bellman candidates in it have the form

BL(x; u1, u2) = m
L
(u)(x1 − u) + f(u), (3.16)

where m
L
(u) satisfies (3.13) and u = uL(x1, x2) is calculated by (3.3). Be-

sides, we must require that m′′
L
(u) ≥ 0, u ∈ (u1, u2).

3.2 Family of tangents coming from ±∞
Consider a domain ΩR(−∞, u2) unbounded on the left and foliated by the
right tangents. It turns out that the Bellman candidate BR(x; −∞, u2) in it
can be chosen uniquely by minimality considerations. Similarly, if we consider
a subdomain ΩL(u1,+∞) unbounded on the right, the minimal Bellman
candidate BL(x; u1,+∞) can also be chosen uniquely.

From (3.10), (3.6), and (3.9) it follows easily that

εm′′
R
(u)eu/ε =

(
f ′′(u1)− ε−1f ′(u1)

)
eu1/ε + ε−1A+

u∫
u1

f ′′′(t)et/ε dt.

Let u1 = −∞. Using limit relations (2.1), we get

εm′′
R
(u)eu/ε = ε−1A+

u∫
−∞

f ′′′(t)et/ε dt.

Since m′′
R
(u) ≤ 0 for all u ∈ (−∞, u2) and integral on the right-hand side

tends to zero as u→ −∞, we have A ≤ 0. On the other hand,

BR(x; −∞, u2) = e−u/ε
[
A+ ε−1

u∫
−∞

f ′(t)et/ε dt

]
(x1 − u) + f(u),
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and since x1 ≤ u, the expression on the right is minimal when A = 0.
Therefore, m

R
(u) = m

R
(u; −∞), where

m
R
(u; −∞) = ε−1e−u/ε

u∫
−∞

f ′(t)et/ε dt; (3.17)

m′′
R
(u; −∞) = ε−1e−u/ε

u∫
−∞

f ′′′(t)et/ε dt. (3.18)

Treating the case of left extremals (L) for u2 = +∞ in a similar way, we
have m

L
(u) = m

L
(u; +∞), where

m
L
(u; +∞) = ε−1eu/ε

+∞∫
u

f ′(t)e−t/ε dt; (3.19)

m′′
L
(u; +∞) = ε−1eu/ε

+∞∫
u

f ′′′(t)e−t/ε dt. (3.20)

We sum up the results of this section in the following proposition.

Proposition 3.2. Suppose the subdomain ΩR(−∞, u2) ⊂ Ωε is foliated by
extremals (R) entirely. In this domain, we define the function BR by the
formula

BR(x; −∞, u2) = m
R
(u; −∞) (x1 − u) + f(u), (3.21)

where m
R
(u; −∞) is given by (3.17) and u = uR(x1, x2) can be calculated

by (3.2). Also assume that

m′′
R
(u; −∞) ≤ 0, u ∈ (−∞, u2),

where m′′
R
(u; −∞) is calculated by (3.18). Then BR(x; −∞, u2) is the mini-

mal Bellman candidate in ΩR(−∞, u2).
Next, suppose the subdomain ΩL(u1,+∞) ⊂ Ωε is foliated by extremals (L).

In this domain, we consider the function BL defined by the formula

BL(x; u1,+∞) = m
L
(u; +∞) (x1 − u) + f(u), (3.22)

where m
L
(u; +∞) is given by (3.19) and u = uL(x1, x2) can be calculated

by (3.3). Also we assume that

m′′
L
(u; +∞) ≥ 0, u ∈ (u1,+∞).

Then BL(x; u1,+∞) is the minimal Bellman candidate in ΩL(u1,+∞).
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3.3 Optimizers for the families of tangents

Let B be a Bellman candidate in the whole domain Ωε. We also assume that
some part ΩR(u1, u2) of Ωε is foliated by the right extremal tangents.

From Section 2.4, it follows that delivery curves in ΩR run along the
upper parabola or along the tangents. Also, it can be easily seen that these
delivery curves must be left. Indeed, draw a delivery curve up to some point
on the upper boundary. By the definition of delivery curves, if we cut off a
small interval from the domain of a test function, we get an optimizer for
the Bellman point corresponding to the residual interval. This point must be
close to the initial point, and the Bellman point corresponding to the small
interval can be located far away, almost on the lower boundary. Since the
points corresponding to this split run almost along a right extremal tangent,
the distant point must be on the right of the initial point. Therefore, the
curve runs from the left.

Consider the point W1 =
(
u1 − ε, (u1 − ε)2 + ε2

)
on the upper parabola.

Suppose some convex delivery curve γ runs from a neighbor subdomain and
ends at W1 (i.e. γ(r) = W1). We will see that this curve can be continued
up to each point of ΩR in the way shown on Figure 5: we continue it along
the upper parabola and, after that, along the tangent leading to the desti-
nation point. Therefore, we will obtain optimizers for all the points of ΩR.
The point W1 is called an entry node: the information from the neighbor
subdomain is transmitted through it only.

x1

x2

x2 = x2
1

x2 = x2
1 + ε2

U1

U2

W1γ γ̃

Figure 5: Delivery curves in ΩR.
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For a subdomain ΩL(u1, u2) foliated by the left tangents, the situation is
symmetric. The point W2 =

(
u2 + ε, (u2 + ε)2 + ε2

)
is its entry node. If a

convex right delivery curve γ reaches this point (i.e. γ(l) = W2), then γ can
be continued up to each point in ΩL(u1, u2) (see Figure 6).

x1

x2

x2 = x2
1

x2 = x2
1 + ε2

U2

U1

W2 γγ̃

Figure 6: Delivery curves in ΩL.

Points on the upper parabola. Let γ be a convex left delivery curve
that is generated by a test function ϕ defined on the segment I = [l, r]. Also,
suppose it ends at the entry node W1 of the domain ΩR(u1, u2). First, we
prove that this curve can be continued up to any point W ∈ ΩR(u1, u2), lying
on the upper boundary, in such a way that the resulting curve γ̃ will also be
a left delivery curve.

Since delivery curves run either along extremals or along the upper
parabola and extremals touch the upper parabola, we may assume that the
convex curve γ also touches the upper parabola at the point W1. Thus, the
curve γ̃ cannot avoid being convex. But we do not regard these considerations
as rigorous, and so the convexity of γ̃ will appear as a requirement.

Now, continue the left delivery curve γ along the upper parabola with
preservation of the convexity. In order to prove that the continuation γ̃ is
also a left delivery curve, we must construct a test function ϕ̃ defined on
some segment [l, r̃], r̃ > r, such that γ̃ is generated by this function in the
sense of (2.6) and relation (2.7) is fulfilled for ϕ̃ and γ̃.

We set ϕ̃(s) = ϕ(s) for s ∈ I. The question is how to define ϕ̃(s) for
s > r. For s > r, the curve γ̃(s) =

(
γ̃1(s), γ̃2(s)

)
runs along the upper
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parabola, so

γ̃1(s) =
1

s− l

s∫
l

ϕ̃(t) dt and γ̃2(s) =
1

s− l

s∫
l

ϕ̃2(t) dt = γ̃2
1(s) + ε2.

Therefore,

ϕ̃2(s) =
(
[(s− l)γ̃1]′

)2
=
(
(s− l)(γ̃2

1 + ε2)
)′
,

i.e.
γ̃2

1 + 2(s− l)γ̃1γ̃
′
1 + ((s− l)γ̃′1)2 = γ̃2

1 + 2(s− l)γ̃1γ̃
′
1 + ε2.

Since we build the left delivery curve, we expect the function γ̃1 to be non-
decreasing. Therefore, taking the square root, we obtain

γ̃′1(s) =
ε

s− l . (3.23)

Note that the other root gives us the backwards motion along the parabola.
Solving the equation (3.23), we get

γ̃1(s) = ε log(s− l) + c, (3.24)

and
ϕ̃(s) =

(
(s− l)γ̃1

)′
= ε log(s− l) + c+ ε. (3.25)

Now, using the continuity of the delivery curve at s = r, we obtain the
constant in (3.24) and (3.25):

u1 − ε = γ1(r) = γ̃1(r) = ε log(r − l) + c.

Therefore, c = u1 − ε log(r − l)− ε and equation (3.25) takes the form

ϕ̃(s) = ε log
s− l
r − l + u1, s ∈ (r, r̃], (3.26)

where the choice of r̃ depends on the point we want to reach.
Now we verify that ϕ̃ is an admissible test function and γ̃ is a left delivery

curve generated by this function, i.e, we prove the following statement.

Proposition 3.3. Consider a subdomain ΩR(u1, u2), u1 > −∞, foliated by
the right tangents. Suppose some test function ϕ defined on I = [l, r] gen-
erates a convex left delivery curve γ that lies on the left of ΩR and ends at
the entry node W1 =

(
u1 − ε, (u1 − ε)2 + ε2

)
(i.e., γ(r) = W1). We continue

this curve to the right along the upper parabola without leaving ΩR. If the
resulting curve γ̃ is convex, then it is a left delivery curve generated by the
test function

ϕ̃(s) =


ϕ(s), s ∈ I;

ε log
s− l
r − l + u1, s ∈ [r, r̃].
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Proof. The fact that ϕ̃ generates γ̃ in the sense of (2.6) follows from the
construction of ϕ̃ (see the above considerations). It remains to verify two
points. First, it must be proved that ϕ̃ belongs to BMOε([l, r̃]). Second, we
must verify relation (2.7) for the function ϕ̃, the curve γ̃, and the candidateB.

The fact that ϕ̃ ∈ BMOε([l, r̃]) follows from the geometric lemma 2.16.
Indeed, if [a, b] ⊂ I, then the Bellman point x[a,b] is in Ωε, because ϕ ∈
BMOε(I). If b > r, then the conditions of the lemma just mentioned are
fulfilled.

We turn to verification of (2.7). In ΩR, the Bellman candidate B coincides
with BR (see Proposition 3.1). Therefore, we must check that

BR(γ̃(s); u1, u2) = 〈f(ϕ̃)〉
[l,s]
, s ∈ (r, r̃].

By (3.15) and (3.8), we have

BR(γ̃(s)) = −e−u/ε
(
εA+

u∫
u1

f ′(t)et/ε dt

)
+ f(u), (3.27)

where u = γ̃1(s) + ε. On the other hand, using the same relations and the
continuity of B, we get

B(γ(r)) = −εe−u1/εA+ f(u1).

Now, expressing A in terms of B(γ(r)), substituting the resulting expres-
sion into (3.27), and then integrating by parts, we have

BR(γ̃(s)) = e(u1−u)/εB(γ(r))−
u∫

u1

f ′(t)e(t−u)/ε dt− e(u1−u)/εf(u1) + f(u)

= e(u1−u)/εB(γ(r)) +

u∫
u1

f(t) d(e(t−u)/ε).

Further, using (3.24), we obtain

e(u1−u)/ε = e(γ1(r)−γ1(s))/ε =
r − l
s− l .

We make the substitution t = ϕ̃(τ). Using formula (3.26) and the previous
equation, we get

e(t−u)/ε =
τ − l
r − l e

(u1−u)/ε =
τ − l
s− l .
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It follows from the above that τ runs over (r, s] provided t runs over (u1, u].
Using the substitution just described and the fact that B(γ(r)) = 〈f(ϕ)〉

[l,r]
,

we have

BR(γ̃(s)) =
r − l
s− lB(γ(r)) +

1

s− l

s∫
r

f(ϕ̃(τ)) dτ

=
1

s− l

s∫
l

f(ϕ̃(τ)) dτ = 〈f(ϕ̃)〉
[l,s]
.

This concludes the proof.

Similarly, we can prove a symmetric proposition for ΩL(u1, u2), u2 < +∞.

Proposition 3.4. Consider a subdomain ΩL(u1, u2), u2 < +∞, foliated by
the left tangents. Suppose some test function ϕ defined on I = [l, r] generates
a convex right delivery curve γ that lies on the right of ΩL and ends at the
entry node W2 =

(
u2 + ε, (u2 + ε)2 + ε2

)
(i.e., γ(l) = W2). We continue

this curve to the left along the upper parabola without leaving ΩL. If the
resulting curve γ̃ is convex, then it is a right delivery curve generated by the
test function

ϕ̃(s) =

 ε log
r − l
r − s + u2, s ∈ [l̃, l];

ϕ(s), s ∈ I.

Points inside the domain. We have explained how to continue delivery
curves from entry node W1 (or W2) to a point in ΩR (respectively, in ΩL)
lying on the upper parabola. It occurs that each of the other points in these
subdomains (but the points on the lower boundary) can be reached if we
continue the delivery curve along the corresponding tangent that contains
this point.

Now, let γ be a left delivery curve that is generated by a test func-
tion ϕ defined on I = [l, r]. Suppose we have continued this curve from the
point γ(r) along some straight-line segment that ends at some point U on
the lower boundary (e.g. along an extremal tangent). We want to find a
function ϕ̃ that generates the resulting curve γ̃. Set ϕ̃(s) = ϕ(s) for s ∈ I
and consider the case s > r. Since three points γ̃(r), γ̃(s), and U lie on a
single line, we have

u2 − γ̃2(s)

u− γ̃1(s)
=
u2 − γ2(r)

u− γ1(r)
,
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i.e.

(
u− γ1(r)

)(
(s− l)u2 −

s∫
l

ϕ̃2

)
=
(
u2 − γ2(r)

)(
(s− l)u−

s∫
l

ϕ̃

)
.

Differentiating this identity with respect to s, we obtain the quadratic equa-
tion on ϕ̃(s):(

u− γ1(r)
)(
u2 − ϕ̃2(s)

)
=
(
u2 − γ2(r)

)(
u− ϕ̃(s)

)
.

We will see that its solution ϕ̃(s) = u, s > r, is suitable for us. The second
solution corresponds to the reverse motion along the straight line containing
the segment [γ(r), U ].

It turns out that the following three conditions are sufficient for γ̃ to be
a delivery curve: the curve γ̃ must still be convex, the straight line that
contains [γ(r), U ] must lie below the upper boundary of Ωε, and the Bellman
candidate B must be linear along the segment [γ(r), U ]. In our situation
where a delivery curve in continued in ΩR along one of the extremal tangents,
all these conditions are surely satisfied.

We prove the following general proposition.

Proposition 3.5. Let γ be a convex left delivery curve that is generated by
a test function ϕ defined on I = [l, r]. We draw a straight-line segment from
the point γ(r) to some point U on the lower boundary with preservation of
the convexity. Suppose B is linear on the segment [γ(r), U ] and the line con-
taining this segment lies below the upper boundary. Then we can continue γ
up to any point inside [γ(r), U ] so that the resulting curve γ̃ will also be a
left delivery curve. In this case, the curve γ̃ is generated by the test function

ϕ̃(s) =

{
ϕ(s), s ∈ I;

u, s ∈ [r, r̃].

Proof. We must verify (2.6) and (2.7) for ϕ̃, γ̃, and B. We must also make
sure that ϕ̃ ∈ BMOε([l, r̃]).

Let s ∈ (r, r̃]. For such s, we verify that the points of the curve γ̃(s) =(
〈ϕ̃〉

[l,s]
, 〈ϕ̃2〉

[l,s]

)
get into [γ(r), U ]. We also check that we can reach any point

inside [γ(r), U ] provided r̃ is sufficiently large. Indeed, we have the identity

s∫
l

ϕ̃k(t) dt =

r∫
l

ϕk(t) dt+ (s− r)uk, for k = 1, 2,
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which implies the representation

γ̃(s) = α−γ(r) + α+U, where α− =
r − l
s− l and α+ =

s− r
s− l . (3.28)

Thus, we have proved that γ̃ and ϕ̃ are related by (2.6).
The fact that ϕ̃ belongs to BMOε([l, r̃]) follows from the geometric

lemma 2.16.
It remains to verify equation (2.7). Using the linearity of B on [γ(r), U ]

and representation (3.28), we obtain

B(γ̃(s)) = α−B(γ(r)) + α+B(U)

=
r − l
s− l 〈f(ϕ)〉

[l,r]
+
s− r
s− l f(u)

=
1

s− l

( r∫
l

f(ϕ(t)) dt+

s∫
r

f(u) dt

)
= 〈f(ϕ̃)〉

[l,s]
.

The proposition is proved.

Similarly, we can prove a symmetric statement for right delivery curves.

Proposition 3.6. Let γ be a convex right delivery curve that is generated by
a test function ϕ defined on I = [l, r]. We draw a straight-line segment from
the point γ(l) to some point U on the lower boundary with preservation of the
convexity. Suppose B is linear on the segment [U, γ(l)] and the line containing
this segment lies below the upper parabola. Then we can continue γ up to any
point inside [U, γ(l)] so that the resulting curve γ̃ will also be a right delivery
curve. In this case, the curve γ̃ is generated by the test function

ϕ̃(s) =

{
u, s ∈ [l̃, l];

ϕ(s), s ∈ I.

Applying Propositions 3.3 and 3.5 for the case ΩR(u1, u2) or Proposi-
tions 3.4 and 3.6 for the case ΩL(u1, u2), we can continue delivery curves
from entry nodes up to any points of these domains, except the points on
the lower boundary. But for each point U on the lower boundary, we can
take the optimizer ϕ to be equal to u on the whole interval I, because of the
boundary condition (although it is clear without any optimizers that Bε and
B coincide on the lower boundary).

It is worth mentioning that we only continue delivery curves already con-
structed, but not build new ones, i.e. we require some information from
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the left neighbor of ΩR or from the right neighbor of ΩL. In [8], the do-
main ΩR(u1, u2) with u1 6= −∞ was called left-incomplete, and the domain
ΩL(u1, u2) with u2 6= +∞ was called right-incomplete.

Unbounded domains. Discuss domains ΩR(−∞, u2) and ΩL(u1,+∞) un-
bounded on one side. As usual, we treat in detail only ΩR(−∞, u2) and left
delivery curves in it. It turns out that we can draw a left delivery curve from
−∞ to every point of this domain (except the points on the lower boundary).
At this time, we do not need any extra information.

Consider some curve γ = (γ1, γ2) that runs along the upper parabola
from −∞ up to some point W = (w,w2 + ε2). According to the arguments
preceding Proposition 3.3, such a curve is generated by the function

ϕ(s) = ε log(s− l) + c+ ε

defined on I = [l, r], and

γ1(s) = ε log(s− l) + c.

We set I = [l, r] = [0, 1] and calculate c:

w = γ1(1) = c.

As usual, the fact that ϕ lies in BMOε(I) follows from Lemma 2.16. In order
to prove equation (2.7), we must repeat the corresponding reasoning from
the proof of Proposition 3.3. But now we must integrate from −∞ and the
constant A is equal to zero. We got the following statement.

Proposition 3.7. Consider a subdomain ΩR(−∞, u2) foliated by the right
tangents. If a point W = (w,w2 + ε2) of the upper parabola lies in this
subdomain, then we can construct a left delivery curve running along the
upper parabola from −∞ to W . Such a curve is generated by the test function

ϕ(s) = ε log s+ w + ε, s ∈ [0, 1].

For ΩL(u1,+∞), we can formulate a symmetric proposition about right
delivery curves running along the upper parabola.

Proposition 3.8. Consider a subdomain ΩL(−∞, u2) foliated by the left
tangents. If a point W = (w,w2 + ε2) of the upper parabola lies in this
subdomain, then we can construct a right delivery curve running along the
upper parabola from +∞ to W . Such a curve is generated by the test function

ϕ(s) = −ε log(1− s) + w − ε, s ∈ [0, 1].
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Concerning the points of ΩR(−∞, u2) and ΩL(−∞, u2) not lying on the
upper boundary, we can continue our delivery curves up to them using Propo-
sitions 3.5 and 3.6. Thus, we have obtained the optimizers for all the points
of this domains. In [8], if no extra information from neighbors was required
for a domain, it was called complete.

3.4 Function f ′′′ does not change its sign

It is stated in Proposition 3.2 that the function BR(x; −∞,+∞), defined
by (3.21), is a Bellman candidate in the whole domain Ωε provided f satisfies
some integral condition. Thus, from Statement 2.6, it follows that Bε ≤ BR.
On the other hand, we have constructed (see the previous section) optimizers
for all the points of the domain ΩR(−∞,+∞) = Ωε. This gives us the
converse inequality Bε ≥ BR. We come to the following theorem.

Theorem 3.9. Suppose 0 < ε < ε0, f ∈Wε0 , and
u∫

−∞

f ′′′(t)et/ε dt ≤ 0, ∀u ∈ R.

Then
Bε(x; f) = BR(x; −∞,+∞),

where the function on the right is defined by (3.21).

Using the second part of Proposition 3.2 and the optimizers constructed
in the previous section, we get the symmetric theorem.

Theorem 3.10. Suppose 0 < ε < ε0, f ∈Wε0 , and

+∞∫
u

f ′′′(t)e−t/ε dt ≥ 0, ∀u ∈ R.

Then
Bε(x; f) = BL(x; −∞,+∞),

where the function on the right is defined by (3.22).

Obviously, these theorems treat the case where f ′′′ has one and the same
sign a.e. on R.

Corollary 3.11. Suppose 0 < ε < ε0 and f ∈W0
ε0

. If c0 = −∞, then

Bε(x; f) = BR(x; −∞,+∞),

and if c0 = +∞, then

Bε(x; f) = BL(x; −∞,+∞).
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3.5 Examples

Example 1. The exponential function. The Bellman functions for
f(t) = ±et were constructed in [9]. The function f(t) = et belongs to Wε0

only if ε0 < 1. Therefore, all the further formulas are reasonable only for
ε < 1. We see that the function f ′′′(t) = et is positive on the whole line. Thus,
by Corollary 3.11, the domain Ωε is foliated entirely by the left tangents. We
come to the following formula:

Bε(x1, x2; et) = m
L
(u; +∞) (x1 − u) + f(u)

= (x1 − u) · ε−1eu/ε
∞∫
u

et · e−t/ε dt + eu

=

(
x1 − u
1− ε + 1

)
eu =

1−
√
x2

1 − x2 + ε2

1− ε eu,

where the function u for left tangents is defined by formula (3.3):

u(x1, x2) = x1 −
(
ε−

√
x2

1 − x2 + ε2
)
.

Similarly, if f(t) = −et, the whole domain is foliated by the right tangents.
In this case, we have

Bε(x1, x2; −et) = m
R
(u; −∞) (x1 − u) + f(u)

= (x1 − u) · ε−1e−u/ε
u∫

−∞

(−et) · et/ε dt − eu

= −
(
x1 − u
1 + ε

+ 1

)
eu = −1 +

√
x2

1 − x2 + ε2

1 + ε
eu,

where the function u for right tangents is defined by formula (3.2):

u(x1, x2) = x1 +
(
ε−

√
x2

1 − x2 + ε2
)
.

We recall that the Bellman function for f(t) = −et solves the infimum prob-
lem for f(t) = et (see Remark 2.2).

Example 2. A third-degree polynomial. The simplest example of a
function f such that the sign of f ′′′ does not change, is an arbitrary third-
degree polynomial. In such a case, it is sufficient to obtain the Bellman
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function for f(t) = ±t3 (see Remark 2.3). We see that f ′′′(t) = ±6. Thus,
due to Corollary 3.11, the whole domain is foliated by the left tangents
for Bε(x; t3) or, respectively, by the right tangents for Bε(x; −t3). For
any ε ∈ [0,+∞), the analytical expression for the Bellman function can be
calculated by (3.22) and (3.19) (or by (3.21) and (3.17), respectively). For
f ′′′(t) = 6, we have

Bε(x1, x2; t3) = m
L
(u; +∞) (x1 − u) + f(u)

= (x1 − u) · ε−1eu/ε
∞∫
u

3t2e−t/ε dt+ u3

= (6ε2 + 3u2 + 6εu)(x1 − u) + u3,

where the function u for left tangents is defined by formula (3.3):

u(x1, x2) = x1 −
(
ε−

√
x2

1 − x2 + ε2
)
.

For f ′′′(t) = −6, we have

Bε(x1, x2; −t3) = m
R
(u; −∞) (x1 − u) + f(u)

= (x1 − u) · ε−1e−u/ε
u∫

−∞

−3t2et/ε dt− u3

= (−6ε2 − 3u2 + 6εu)(x1 − u)− u3,

where the function u for right tangents is defined by formula (3.2):

u(x1, x2) = x1 +
(
ε−

√
x2

1 − x2 + ε2
)
.

It is worth noting that

Bε(x1, x2; t3) = −3(x2
1 − x2)ε− 2x3

1 + 3x2x1 +O(ε−1) as ε→∞;

Bε(x1, x2; −t3) = −3(x2
1 − x2)ε+ 2x3

1 − 3x2x1 +O(ε−1) as ε→∞.

4 Transition from right tangents to left ones

In this chapter, we treat the case when there are two domains of left and
right tangents simultaneously. There is also a triangle domain between them,
where our Bellman candidate is linear. The reader can glance at Figure 7
to understand what is meant. In Section 4.1, we will construct a function
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corresponding to such a foliation and obtain some conditions guaranteeing
that this function is a Bellman candidate. Again, we note that the arguments
in Section 4.1 partially repeat the corresponding arguments in [8]. Further,
in Section 4.2, we will build optimizers for the triangle domain of linearity.
Finally, in Section 4.3, we will summarize this chapter and describe the con-
ditions on f under which Bε(x; f) corresponds to the foliation discussed. In
particular, it turns out that the transition between right and left tangents
can occur for f ∈ W1

ε0
with c0 = −∞ and c1 = +∞, i.e. if the sign of f ′′′

changes once from minus to plus.

4.1 Angle

Let u1 < v < u2. Consider two subdomains ΩR(u1, v) and ΩL(v, u2) foliated
by extremals (R) and (L), respectively. We can see a subdomain in the form
of an angle lying between ΩR and ΩL. It is bounded by the upper parabola
and by the right and left tangents coming from the point V = (v, v2) (see
Figure 7):

Ωang(v)
def
=
{
x ∈ R2 | v−ε ≤ x1 ≤ v+ε, 2vx1−v2+2ε|v−x1| ≤ x2 ≤ x2

1+ε2
}
.

x1

x2

U1

U2

V

x2 = x2
1x2 = x2

1 + ε2

ΩR
Ωang

ΩL

Figure 7: Angle Ωang lying between ΩR and ΩL.

Now we construct a Bellman candidate in the subdomain

ΩRL(u1, v, u2)
def
= ΩR(u1, v) ∪ Ωang(v) ∪ ΩL(v, u2).
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We denote this candidate by BRL(x; u1, v, u2). The candidates in ΩR and ΩL

have been constructed already:

BRL(x; u1, v, u2) = BR(x; u1, v) if x ∈ ΩR(u1, v);

BRL(x; u1, v, u2) = BL(x; v, u2) if x ∈ ΩL(v, u2).

We recall that BR and BL are, in fact, families of functions. Concerning the
domain Ωang(v), the function we are looking for must be linear on it. Indeed,
by the continuity, the function BRL is linear on the one-sided tangents that
bound Ωang(v). Thus, BRL is also linear on the whole subdomain Ωang(v) by
the minimality. Therefore, if x ∈ Ωang(v), then

BRL(x; u1, v, u2) = Bang(x; v) = α1x1 + α2x2 + α0.

Calculating the values of Bang in the vertices of the angle Ωang(v), we have
α1v + α2v

2 + α0 = f(v);

α1(v − ε) + α2

(
(v − ε)2 + ε2

)
+ α0 = −m

R
(v)ε+ f(v);

α1(v + ε) + α2

(
(v + ε)2 + ε2

)
+ α0 = m

L
(v)ε+ f(v).

Solving this system, we obtain

α1 =
m

R
(v) +m

L
(v)

2
− m

L
(v)−m

R
(v)

2ε
v;

α2 =
m

L
(v)−m

R
(v)

4ε
;

α0 =
m

L
(v)−m

R
(v)

4ε
v2 − m

R
(v) +m

L
(v)

2
v + f(v).

(4.1)

Now we discuss the concavity of BRL. As it has already been verified, the
local concavity of BR(x; u1, v) and BL(x; v, u2) is equivalent, respectively, to
the inequalities

m′′
R
(u) ≤ 0 for u ∈ (u1, v);

m′′
L
(u) ≥ 0 for u ∈ (v, u2).

Suppose these inequalities are fulfilled. We want to obtain some conditions
on v that are necessary and sufficient for the concatenation of BR, Bang, and
BL to be locally concave. In order for the function BRL to be concave along
the direction x2, its derivative BRL

x2
must be monotonically decreasing in x2.

Therefore, the jumps of BRL
x2

on the boundary of Ωang must be non-positive.
They are

δR = α2 − lim
u→v−

t2(u) and δL = α2 − lim
u→v+

t2(u).
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Using (3.6) and (3.7), we obtain

lim
u→v−

t2(u) =
m′

R
(v)

2
=
f ′(v)−m

R
(v)

2ε
,

and due to (3.11) and (3.12), we have

lim
u→v+

t2(u) =
m′

L
(v)

2
=
m

L
(v)− f ′(v)

2ε
.

Now, using formula (4.1) for α2, we get the expressions for the jumps:

δR =
1

4ε
(m

R
(v) +m

L
(v)− 2f ′(v));

δL = − 1

4ε
(m

R
(v) +m

L
(v)− 2f ′(v)).

We see that their signs are always different. On the other hand, both jumps
are non-positive and, therefore, are equal to zero. Thus, the condition

m
R
(v) +m

L
(v) = 2f ′(v)

is necessary for the function BRL to be locally concave. Thus, if our concate-
nation is locally concave, then its derivative BRL

x2
must be continuous. The

partial derivatives of BRL along the tangents bounding Ωang(v) are also con-
tinuous (constant). Therefore, the function BRL has continuous derivatives
along two non-collinear directions, so the derivatives along all the directions
are continuous. But a C1-smooth concatenation of locally concave functions
is locally concave. Hence, the condition m

R
(v) + m

L
(v) = 2f ′(v) is also

sufficient for the local concavity of the concatenation BRL provided its com-
ponents BR, Bang and BL are locally concave. Finally, by (3.6) and (3.11),
the resulting condition is equivalent to the identity

m′′
R
(v) +m′′

L
(v) = 0. (4.2)

We summarize this section.

Proposition 4.1. Let u1 < v < u2. Consider the subdomains ΩR(u1, v) and
ΩL(v, u2) foliated by extremals (R) and (L), respectively. We also suppose
that the domain Ωang(v) lying between them is a domain of linearity. Then a
Bellman candidate in the union ΩRL(u1, v, u2) of these domains has the form

BRL(x; u1, v, u2) =


BR(x; u1, v), x ∈ ΩR(u1, v);

Bang(x; v), x ∈ Ωang(v);

BL(x; v, u2), x ∈ ΩL(v, u2),

(4.3)
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where Bang(x; v) = α1x1 +α2x2 +α0, and the coefficients α1, α2, and α0 are
calculated by (4.1). In addition, the following relations must be fulfilled :

m′′
R
(u) ≤ 0, u ∈ (u1, v);

m′′
L
(u) ≥ 0, u ∈ (v, u2);

m′′
R
(v) +m′′

L
(v) = 0.

4.2 Optimizers in angle

Now we construct optimizers for the points inside an angle. Suppose B is a
Bellman candidate in Ωε and some part of Ωε is represented by the construc-
tion ΩRL(u1, v, u2) described in Proposition 4.1. We have already learned
(see Section 3.3) how to build delivery curves and optimizers in ΩR(u1, v)
and ΩL(v, u2). It turns out that we need information from both right and
left neighbors of the angle in order to obtain optimizers for its points. To
be more precise, we need two delivery curves already built: a left delivery
curve γ− that reaches some point P− on the right boundary of ΩR(u1, v), and
the right delivery curve γ+ that reaches some point P+ on the left boundary
of ΩL(v, u2). If we have optimizers in two points of Ωang(v), then we can
construct an optimizer for any points of the segment that connects them
provided this segment lies in Ωang(v) entirely.

Let x ∈ Ωang(v). We draw some straight line L that passes through x and
does not intersect the upper parabola. This line intersects both sides of the
angle. We denote the points of intersection by P±. Then x will be a convex
combination of P±: x = α−P−+α+P

+, where α± ≥ 0 and α−+α+ = 1. We
build the optimizer ϕ− for P− on I− = [0, α−] and the optimizer ϕ+ for P+

on I+ = [α−, 1] (see Section 3.3). Concatenating ϕ− and ϕ+, we obtain the
function ϕ on [0, 1]. It is easy to see that ϕ satisfies conditions (2) and (3)
of Definition 2.13. This follows immediately from the representation of x as
a convex combination of P± and from the linearity of B in Ωang:

xk = α−P
−
k + α+P

+
k =

α−∫
0

ϕk−(s) ds+

1∫
α−

ϕk+(s) ds =

1∫
0

ϕk(s) ds =〈ϕk〉
[0,1]

k = 1, 2;
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B(x) = α−B(P−) + α+B(P+) =

α−∫
0

f(ϕ−(s)) ds+

1∫
α−

f(ϕ+(s)) ds

=

1∫
0

f(ϕ(s)) ds = 〈f(ϕ)〉
[0,1]
.

x1

x2

L
P− P+

x

V

x[a,α−]
x[α−,b]

x[0,a]

x[b,1]

Figure 8: Optimizers in Ωang(v).

In order to prove that ϕ is an optimizer for x, it remains to verify that
ϕ ∈ BMOε([0, 1]). Consider some subinterval [a, b] ⊂ [0, 1] and the Bellman
point x[a,b] =

(
〈ϕ〉

[a,b]
, 〈ϕ2〉

[a,b]

)
. If α− /∈ (a, b), then x[a,b] gets into Ωε, because

ϕ± ∈ BMOε(I±). Thus, we only need to consider the intervals [a, b] such
that α− ∈ (a, b). Note that P− = x[0,α−] is a convex combination of x[0,a] and
x[a,α−] and, therefore, lies on the segment connecting them. The point x[0,a]

lies somewhere on the delivery curve coming from above and ending at P−
(we already know how this curve is arranged: it is a convex curve that runs
along the upper parabola and then descend along the right tangent down to
the point P−). Consequently, x[0,a] lies above L, and so x[a,α−] lies below L.
Similarly, we can verify that x[α−,b] lies under L. But the point x[a,b] is a
convex combination of x[a,α−] and x[α−,b]. Therefore, it lies below L and,
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consequently, in Ωε. As a result, we have constructed optimizers ϕ for all the
points x in Ωang(v).

4.3 Function f ′′′ changes its sign from minus to plus

Propositions 3.2 and 4.1, together with the existence of optimizers in the
domains ΩR(−∞, v), ΩL(v,+∞), and Ωang(v), imply the following theorem.

Theorem 4.2. Let 0 < ε < ε0 and f ∈ Wε0. Suppose there exists v ∈ R
such that

m′′
R
(u; −∞) ≤ 0 for u ∈ (−∞, v);

m′′
L
(u; +∞) ≥ 0 for u ∈ (v,+∞);

m′′
R
(v; −∞) +m′′

L
(v; +∞) = 0,

where m′′
R
(u; −∞) and m′′

L
(u; +∞) are expressed by (3.18) and (3.20). Then

Bε(x; f) = BRL(x; −∞, v,+∞),

where the function on the right hand side is defined by (4.3), and its parts
BR(x; −∞, v) and BL(x; v,+∞) are defined by (3.21) and (3.22).

It turns out that the conditions of Theorem 4.2 can be satisfied if f ′′′

changes its sign from minus to plus.

Theorem 4.3. Let 0 < ε < ε0 and f ∈W1
ε0

with c0 = −∞, c1 = +∞. We
denote

gε(u)
def
= (f ′′′ ∗ wε)(u),

where wε(t) = e−|t|/ε. The function gε is continuous, and

1) if gε < 0 on R, then the conditions of Theorem 3.9 are satisfied ;

2) if gε > 0 on R, then the conditions of Theorem 3.10 are satisfied ;

3) if gε(v) = 0 for some v ∈ R, then the conditions of Theorem 4.2 are
satisfied.

Proof. First, we note that

ε−1gε(u) = m′′
R
(u; −∞) +m′′

L
(u; +∞),

where m′′
R
(u; −∞) and m′′

L
(u; +∞) are given by (3.18) and (3.20).

Recall the point where f ′′′ changes its sign was denoted v1. Consider
case 1). It is clear that for u ≤ v1 the inequality m′′

R
(u; −∞) < 0 is always
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fulfilled, because f ′′′(u) < 0 a.e. on (−∞, v1). On the other hand, for u ≥ v1

we use the condition gε < 0:

m′′
R
(u; −∞) = ε−1gε −m′′L(u; +∞) < −m′′

L
(u; +∞).

Since f ′′′(u) > 0 a.e. for u ≥ v1, the inequality −m′′
L
(u; +∞) < 0 is valid.

Thus, we see that m′′
R
(u; −∞) < 0 for all u ∈ R, and the conditions of

Theorem 3.9 are fulfilled. Case 2) can be treated similarly.
Finally, we consider case 3). We may treat only the case v ≥ v1 (the

case v ≤ v1 can be treated similarly). The sign of f ′′′ is known, and so
m′′

L
(u; +∞) > 0 for u ≥ v (this is one of the conditions of Theorem 4.2). We

also know that m′′
R
(u; −∞) < 0 for u ≤ v1. Thus, it remains to verify that

m′′
R
(u; −∞) < 0 for u ∈ (v1, v). On the one hand, we have

m′′
R
(v; −∞) = ε−1gε(v)−m′′

L
(v; +∞) = −m′′

L
(v; +∞) < 0.

On the other hand, the function eu/εm′′
R
(u; −∞) increases monotonically on

(v1, v), because

eu/εm′′
R
(u; −∞) = ε−1

u∫
−∞

f ′′′(t)et/ε dt

and f ′′′ is positive on this interval. Consequently, eu/εm′′
R
(u; −∞) is negative

for all u ∈ (v1, v). As a result, all the conditions of Theorem 4.2 are fulfilled.

4.4 Examples

Example 3. The power function. The function f(t) = |t|p was treated
in [8]. For p > 2, it gets into the class being considered: f ∈ W1

ε0
with

c0 = −∞, c1 = +∞. Here, we do not write an explicit expression for
the Bellman function, but merely verify that the conditions of case 3) in
Theorem 4.3 are satisfied. Indeed, the expression

ε−1gε(u) = m′′
R
(u; −∞) +m′′

L
(u; +∞)

= ε−1

∞∫
−∞

sign t · p(p− 1)(p− 2)|t|p−3e−|u−t|/ε dt

has the unique root u = 0. Therefore, the vertex of the angle has coordinates
(0, 0) for any ε ∈ (0,∞), i.e. it does not depend on ε.
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Example 4. The concatenation of two exponential functions. We
consider a certain family of functions that depend on a parameter. The third
derivative of each of these functions changes its sign once from minus to plus.
For certain values of our parameter the domain will be foliated entirely by
the tangents of the same type, and for other values an angle will arise.

Namely, we consider a function f such that its third derivative is given
as follows:

f ′′′(t) =

{
et, t ≥ 0;

−et/α, t < 0.
(4.4)

For example, we may set

f(t) =

{
et, t ≥ 0;

−et/αα3 + t2

2
(1 + α) + t(1 + α2) + 1 + α3, t < 0.

(4.5)

For any positive α, this function belongs to W1
1 with c0 = −∞, c1 = +∞.

Now we want to find all α such that the condition of Theorem 3.10 is satisfied,
i.e. ∞∫

u

f ′′′(t)e−t/ε dt ≥ 0 for u ∈ R.

For u < 0, we have

∞∫
u

f ′′′(t)e−t/ε dt =
ε

1− ε +
αε

α− ε −
αε

α− ε exp

(
−u(α− ε)

αε

)
.

This expression is non-negative for all u < 0 if and only if α < ε and

ε

1− ε +
αε

α− ε ≥ 0.

Thus, the condition of Theorem 3.10 is satisfied when

0 < α ≤ ε

2− ε. (4.6)

Therefore, in the case where the boundary values are defined by (4.5), condi-
tion (4.6) is necessary and sufficient for Ωε to be foliated by the left tangents.
Thus, for such values α, the Bellman function can be easily restored:

Bε(x1, x2; f) = (x1 − u)m
L
(u; +∞) + f(u),
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where

m
L
(u; +∞) = ε−1eu/ε

∞∫
u

f ′(t)e−t/ε dt

=


eu

1

1− ε, u ≥ 0;

eu/ε
ε3+ε3α−2αε2

(1−ε)(ε−α)
+ eu/α

α3

ε− α + (u+ ε)(1 + α) + (1 + α2), u < 0.

Also, we recall (see 3.3) that

u = x1 − ε+
√
x2

1 − x2 + ε2.

We note that for α considered above, case 2) in Theorem 4.3 occurs. Now
we verify that for

α >
ε

2− ε (4.7)

case 3) in this theorem comes into play. Indeed, if condition (4.7) is fulfilled,
the equation

ε−1gε(u) = m′′
R
(u; −∞) +m′′

L
(u; +∞) = 0

has the unique root

u =


αε

α− ε log

(
2α2(1− ε)

(α + ε)(2α− αε− ε)

)
, α 6= ε;

− ε(ε+ 1)

2(1− ε) , α = ε.

Example 5. A fourth-degree polynomial. It is clear that any fourth-
degree polynomial belongs to W1

ε0
for all ε0 > 0, c0 = −∞, c1 = +∞, if

the leading coefficient is positive. According to Remark 2.3, it is sufficient
to consider polynomials of the form f = 1

24
t4 − a

6
t3, a ∈ R. In such a case,

f ′′′(t) = t− a.
We do not write an explicit expression for the Bellman function, but only

verify that condition 3) in Theorem 4.3 is fulfilled and look for the vertex of
the angle. The expression

m′′
R
(u; −∞) +m′′

L
(u; +∞) = ε−1

∞∫
−∞

(t− a)e−|u−t|/εdt = 2(u− a)
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has the unique root u = a. Thus, for any ε ∈ (0,∞), the vertex of the angle
has the coordinates (a, a2). We note that the coordinates of the vertex do
not depend on ε.

Example 6. The angle moves when ε varies. Now we consider a more
interesting case where the vertex of an angle varies depending on ε. Let f
be a C3-smooth function such that

f ′′′(t) =

{
−t2, t ≤ 0;

t , t > 0.

Then f ∈ W1
ε0

for any ε0 > 0, c0 = −∞, c1 = +∞. We want to check
condition 3) in Theorem 4.3:

m′′
R
(v; −∞) +m′′

L
(v; +∞)

= ε−1

v∫
−∞

(
− t2χ(−∞,0)(t) + tχ(0,∞)(t)

)
e(t−v)/ε dt

+ ε−1

∞∫
v

(
− t2χ(−∞,0)(t) + tχ(0,∞)(t)

)
e(v−t)/ε dt

=

{
−4ε2 − 2v2 + 2ε2ev/ε + εev/ε, v < 0;

−2ε2e−v/ε + εe−v/ε + 2v, v ≥ 0.
(4.8)

If v ≥ 0, we can write the equation for the vertex of the angle as

v

ε
e
v
ε =

(
ε− 1

2

)
. (4.9)

It is clear that this equation has no positive solutions for ε < 1/2. Therefore,
we consider the case ε ≥ 1/2. We see that the solution of equation (4.9) is
the function v(ε) = εW (ε− 1/2), where W (z) is the Lambert function. The
Lambert function is defined by the equation W (z)eW (z) = z. It is clear that
v(1/2) = 0. Thus, since v ≥ 0 and W ′ > 0, it follows that v′(ε) > 0 for
ε ≥ 1/2. Therefore, for ε ≥ 1/2, condition 3) in Theorem 4.3 is fulfilled, and
the vertex v(ε) of the angle moves to the right when ε grows.

We claim that for 0 < ε < 1/2 the equation for the vertex of the angle
has a negative solution. We equate expression (4.8) for v < 0 to zero:

ev/ε(2ε2 + ε)− 4ε2 − 2v2 = 0.
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Note that the left hand side of this equation increases monotonically from
−∞ to the positive number ε− 2ε2 as v runs from −∞ to 0. Consequently,
this equation has a unique root v(ε), i.e. condition 3) of Theorem 4.3 is
fulfilled. It is easy to see that v(ε)→ 0 as ε→ 0 or ε→ 1/2. Besides, we can
find a number ε̃, 0 < ε̃ < 1/2, with the following properties: if ε decreases
from 1/2 to ε̃, then the vertex of the angle moves from zero to a certain
value ṽ, and if ε decreases from ε̃ to zero, then the vertex returns from ṽ to
zero.

5 Transition from left tangents to right ones

In this chapter, we consider a transition from left tangents to right ones. Such
a transition is performed through a subdomain foliated by extremal chords
whose endpoints lie on the lower parabola. The reader can look at Figure 10
to understand what is meant. In Section 5.1, we will describe the form that
any Bellman candidate must have in a subdomain foliated by extremal chords
(see Figure 9) and also derive some conditions that these chords must satisfy.
In Section 5.2, we will construct a Bellman candidate in the domain shown
in Figure 10. It turns out that in the case where domains ΩL and ΩR border
on a domain foliated by chords, the corresponding candidates BL and BR

can be determined uniquely (i.e. the integration constant can be calculated
explicitly). In Section 5.3, we will build delivery curves and optimizers in
domains foliated by chords. As we will see, such a domain is another place
(besides ±∞) where delivery curves can originate. Finally, in Section 5.4,
we will prove that if f ∈ W0

ε0
and c0 6= ±∞ (i.e. f ′′′ changes its sign once,

from plus to minus), then the Bellman function Bε(x; f) corresponds to the
foliation described above.

Before continuing, we recall our agreement on the notation. If a point on
the lower boundary is denoted by a capital Latin letter, then the correspond-
ing small letter denotes the first coordinate of this point (and vice versa).
Throughout this chapter, we use this rule very often.

5.1 Family of chords

Let A0, A1, B1 and B0 be four points on the lower boundary of Ωε with
the abscissas a0, a1, b1 and b0 such that a0 < a1 < b1 < b0 and b0 − a0 ≤ 2ε.
We draw two segments [A0, B0] and [A1, B1]. It is easy to see that both of
these segments lie in Ωε entirely. We consider the subdomain bounded by
these segments and two arcs of the lower parabola: the one connects A0 and
A1 and the other connects B1 and B0. Suppose this subdomain is foliated
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entirely by a family of non-intersecting chords with the endpoints lying on
the different arcs of the lower parabola. We denote such a subdomain by
Ωch(a0, b0, a1, b1) (see Figure 9).

x1

x2

x2 = x2
1

x2 = x2
1 + ε2

A0

B0

A1

B1

A

B
x

Figure 9: A domain Ωch with the chords.

We see that for any point x in Ωch(a0, b0, a1, b1) there are two num-
bers a ∈ [a0, a1] and b ∈ [b1, b0] such that the chord [A,B] belongs to
our family and contains x. We want to construct a Bellman candidate in
Ωch(a0, b0, a1, b1) whose partial derivatives are constant along the chords in
our family. What is more, we derive some conditions on the chords that
allow such a candidate to exist at all. We denote the function required by
Bch(x; a0, b0, a1, b1) (sometimes we write Bch(x) for short).

First, we note that the principal difference between the cases of extremal
chords and extremal tangents lies in the fact that using the linearity along
the chords, we can restore Bch in Ωch uniquely. Indeed, if we know that
Bch(A) = f(a), Bch(B) = f(b), and Bch is linear along the chord [A,B],
then we can calculate the value of Bch at any point x lying on this chord:

Bch(x) =
f(b)− f(a)

b− a x1 +
bf(a)− af(b)

b− a . (5.1)

However, the function Bch built in this way is a Bellman candidate only if
its derivatives Bch

x1
and Bch

x2
are constant along the extremals. We will get

some condition on the chords that guarantees the constancy of Bch
x1

and Bch
x2

on them.
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We parametrize our chords [A,B] by the values ` = b − a. Then the
right endpoint B(`) moves to the right, i.e, the function b(`) increases. The
left endpoint A(`) moves to the left at the same time, i.e. the function a(`)
decreases. In addition, we assume that the functions a and b are differentiable
and the inequalities a′ < 0 and b′ > 0 are fulfilled. The last requirement
implies that the chords [A,B] do not intersect. Domains foliated by extremal
chords that share a common point on the boundary, can arise if the boundary
function f is not smooth enough (see [8] or [12]). We will not encounter such
domains due to our assumptions on the smoothness of f .

In its turn, ` can be treated as a function of x ∈ Ωch, i.e. we consider the
function `(x). For short, we often omit the arguments of the functions a, b
and `. We write the equation of the line passing through points A and B:

x2 = (a+ b)x1 − ab.

Now we calculate `x2 . By the last relation, if x1 is fixed, then x2 is a differ-
entiable function of ` with

x′2 = x1(a′ + b′)− (ab′ + ba′).

But x1 takes values from a to b. Therefore, x′2 runs between (a− b)a′ and
(b− a)b′. Each of this two values is greater than zero, and so x′2(`) > 0.
Consequently, the inverse function ` is differentiable in x2, and

`x2 =
1

x1(a′ + b′)− (ab′ + ba′)
. (5.2)

We are ready to calculate the partial derivatives of Bch. As we have
already mentioned, we are searching for a condition on the chords under
which Bch

x1
and Bch

x2
are constant along them. Since Bch is linear along the

chords, it is sufficient to obtain a condition that guarantees the constancy of
Bch
x2

along them. Differentiating identity (5.1) in x2, we get

Bch
x2

(x1, x2) =
αx1 + β

(b− a)2
`x2 , (5.3)

where

α =
(
f ′(b)b′ − f ′(a)a′

)
(b− a)−

(
f(b)− f(a)

)
(b′ − a′);

β =
(
b′f(a) + bf ′(a)a′ − a′f(b)− af ′(b)b′

)
(b− a)

−
(
bf(a)− af(b)

)
(b′ − a′),
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and `x2 is given by (5.2). Since Bch
x2

is constant along the chords, it does not
depend on x1 if ` is fixed. But if the quotient of two linear functions does
not depend on the variable, then their coefficients must be proportional, i.e.

α(ab′ + ba′) = −β(a′ + b′).

Substituting the corresponding expressions for α and β, we obtain, after
elementary calculations, the equivalent identity:

a′b′
(
f ′(a) + f ′(b)

2
− f(b)− f(a)

b− a

)
= 0.

Dividing by a′b′, we have

〈f ′〉
[a,b]

=
f ′(a) + f ′(b)

2
. (5.4)

Thus, under the assumption a′b′ 6= 0, the derivatives of Bch are constant on
the chords [A,B] if and only if their ends satisfy equation (5.4).

Now we turn to the concavity of the function Bch constructed above. We
note that at each point of Ωch, our function is linear in one direction. There-
fore, as in the case of extremal tangents discussed in the previous chapter,
it is sufficient to verify the concavity along some other direction. Since the
direction x2 always differs from the direction of chords, it is enough to study
the sign of Bch

x2x2
. First, using (5.4), we simplify formula (5.3) for Bch

x2
. Since

the expression for Bch
x2

does not depend on x1, we have

Bch
x2

(x1, x2) =

(
f ′(b)b′ − f ′(a)a′

)
(b− a)−

(
f(b)− f(a)

)
(b′ − a′)

(a′ + b′)(b− a)2

=
2f ′(b)b′ − 2f ′(a)a′ −

(
f ′(b) + f ′(a)

)
(b′ − a′)

2(a′ + b′)(b− a)

=
f ′(b)− f ′(a)

2(b− a)
.

Since ` strictly increases as x2 grows (this is obvious by the geometric con-
siderations, but the formal proof can be found in the derivation of (5.2)), it
is sufficient to study the sign of Bch

x2`
. By direct calculations, we have

2Bch
x2`

=
f ′′(b)b′ − f ′′(a)a′

b− a − f ′(b)− f ′(a)

(b− a)2
(b′ − a′)

=
b′
(
f ′′(b)− 〈f ′′〉

[a,b]

)
− a′

(
f ′′(a)− 〈f ′′〉

[a,b]

)
b− a .

(5.5)
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On the other hand, differentiating equation (5.4) with respect to `, we get

b′
(
f ′′(b)− 〈f ′′〉

[a,b]

)
+ a′

(
f ′′(a)− 〈f ′′〉

[a,b]

)
= 0 . (5.6)

We introduce the following notation:

DL(a, b) = f ′′(a)− 〈f ′′〉
[a,b]

and DR(a, b) = f ′′(b)− 〈f ′′〉
[a,b]
. (5.7)

Equation (5.6), together with the inequalities b′ > 0 and a′ < 0, implies that
DL(a, b) and DR(a, b) have the same sign for every chord [A,B]. Thus, by
virtue of (5.5), we see that Bch

x2`
≤ 0 if and only if either DL(a, b) ≤ 0 or

DR(a, b) ≤ 0. What is more, each of these two inequalities implies the other.
We summarize this section in the following proposition.

Proposition 5.1. Consider a domain Ωch(a0, b0, a1, b1) foliated entirely by
non-intersecting chords [A,B], and parametrize the first coordinates a and b
of their endpoints by ` = b− a. Suppose a and b are differentiable functions
such that a′ < 0 and b′ > 0. Under these assumptions, we can build a function
Bch(x; a0, b0, a1, b1) such that its partial derivatives are constant along the
chords [A,B], if and only if all the chords satisfy (5.4). The function Bch

can be calculated by (5.1). Also, we have

Bch
x2

(x) =
f ′(b)− f ′(a)

2(b− a)
=

1

2
〈f ′′〉

[a,b]
, (5.8)

where a and b are the first coordinates of the endpoints of the chord [A,B]
passing through x.

The function Bch is locally concave (and, therefore, it is a Bellman candi-
date) if and only if for every chord [A,B] one of the following two inequalities
is fulfilled :

DL(a, b) ≤ 0 or DR(a, b) ≤ 0. (5.9)

Furthermore, each of these two inequalities implies the other one.

5.2 Cup

In the previous section, we dealt with subdomains Ωch(a0, b0, a1, b1) lying
between two chords [A0, B0] and [A1, B1] in Ωε. Now we consider a subdomain
arising in the case a1 = b1.

Definition 5.2. Let 0 ≤ b0 − a0 ≤ 2ε. Consider the subdomain of Ωε that
lies between [A0, B0] and the lower parabola. Suppose there exists a family
of non-intersecting chords that foliate this subdomain entirely and have the
following properties:
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1) if we parametrize the first coordinates a and b of their endpoints by
` = b−a, we obtain the differentiable functions a(`) and b(`) such that
a′ < 0 and b′ > 0;

2) each of these chords satisfies equation (5.4);

3) for each chord, one of two inequalities (5.9) is fulfilled.

In such a situation, we call the subdomain being considered a cup and denote
it by Ωcup(a0, b0).

The unique point c lying in the intersection of all the intervals [a, b] is
called the origin of the cup. The points a0 and b0 are called the ends of the
cup, and the value `0 = b0 − a0 is called the size of the cup. Note that if
`0 = 2ε, the chord [A0, B0] touches the upper parabola. In such a case, we
say that the cup Ωcup(a0, b0) is full. Also, the case `0 = 0 is not excluded
from the consideration. In this situation, the cup consists of the single point
(c, c2).

Using (5.1), we construct a function in Ωcup(a0, b0) that is linear along
the chords [A,B]. Proposition 5.1 implies that such a function is a Bellman
candidate in the cup. We denote it by Bcup(x; a0, b0).

Now we assume that u1 < a0 < b0 < u2 and b0 − a0 = 2ε. Consider
a full cup Ωcup(a0, b0) together with two domains ΩL(u1, a0) and ΩR(b0, u2)
adjacent to the cup and foliated by extremals (L) and (R), respectively (see
Figure 10).

Consider the union

ΩLR(u1, [a0, b0], u2)
def
= ΩL(u1, a0) ∪ Ωcup(a0, b0) ∪ ΩR(b0, u2).

In this domain, we are looking for a function such that its partial deriva-
tives are constant along the chords in Ωcup and, respectively, along the cor-
responding tangents in ΩR and ΩL. Denote the function being sought by
BLR(x; u1, [a0, b0], u2). In Ωcup it must coincide with Bcup. Concerning the
subdomains ΩL and ΩR, the corresponding functions BL and BR are cal-
culated by formulas (3.16) and (3.15), where the functions m

L
and m

R
are

not defined uniquely: we have the freedom to choose the values m
L
(a0) and

m
R
(b0) (see (3.13) and (3.8)). But in the situation being considered, there is

the only way to choose m
L
(a0) and m

R
(b0) so that the corresponding func-

tions BL and BR glue with Bcup continuously. Indeed, on the chord with
ends a0 and b0, the function Bcup can be calculated by the formula

Bcup
(
x1, (a0 + b0)x1 − a0b0

)
=
f(b0)− f(a0)

b0 − a0

(x1 − a0) + f(a0).
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x1

x2

x2 = x2
1

x2 = x2
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A0

B0

U1 U2

Ωcup

ΩRΩL

Figure 10: A cup Ωcup lying between ΩL and ΩR.

On the other hand, by (3.16) the limit values of BL on this chord are
equal to m

L
(a0)(x1 − a0) + f(a0). Therefore, the identity

m
L
(a0) =

f(b0)− f(a0)

b0 − a0

= 〈f ′〉
[a0,b0]

is necessary and sufficient for the concatenation of BL and Bcup to be con-
tinuous. Using chord equation (5.4), we can rewrite the equation obtained
above as

m
L
(a0) =

f ′(a0) + f ′(b0)

2
. (5.10)

By m
L
(u; a0) denote the coefficient m

L
(u) satisfying this condition. Us-

ing (3.13), we get

m
L
(u; a0) =

f ′(a0) + f ′(b0)

2
e(u−a0)/ε + ε−1eu/ε

a0∫
u

f ′(t)e−t/ε dt. (5.11)

Thus, in ΩL(u1, a0), the function BLR(x; u1, [a0, b0], u2) coincides with the
function

BL(x; u1, [a0, b0])
def
= m

L
(u; a0) (x1 − u) + f(u), (5.12)

where u = uL(x1, x2) can be calculated by (3.3).
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Using similar considerations, we see that the concatenation of Bcup and
BR is continuous if and only if m

R
(u) = m

R
(u; b0), where

m
R
(u; b0) =

f ′(a0) + f ′(b0)

2
e(b0−u)/ε + ε−1e−u/ε

u∫
b0

f ′(t)et/ε dt. (5.13)

This means that in ΩR(b0, u2) the function BLR(x; u1, [a0, b0], u2) being
sought must coincide with the function

BR(x; [a0, b0], u2)
def
= m

R
(u; b0) (x1 − u) + f(u), (5.14)

where u = uR(x1, x2) can be calculated by (3.2).
Before discussing the local concavity of the function BLR(x; u1, [a0, b0], u2)

constructed above, we show that BLR is not only continuous, but also C1-
smooth. Let t2 = BLR

x2
. We treat t2 as a function of u in ΩL(u1, a0), and

as a function of a — the left ends of the extremal chords — in Ωcup(a0, b0).
Using (5.8), we obtain

t2(a0) =
f ′(b0)− f ′(a0)

2(b0 − a0)
.

On the other hand, by (3.11), (3.12), and (5.10), we have

lim
u→a0−

t2(u) =
m′

L
(a0; a0)

2
=
m

L
(a0; a0)− f ′(a0)

2ε
=
f ′(b0)− f ′(a0)

2(b0 − a0)
.

Thus, the function BLR
x2

is continuous at the junction of ΩL and Ωcup. Sim-
ilarly, we can prove its continuity at the junction of Ωcup and ΩR. But the
derivative of BLR in the direction of the chord [A0, B0] is also continuous
(constant), i.e. on the chord just mentioned, the function BLR has continu-
ous derivatives in two non-collinear directions. Thus, the function BLR turns
out to be C1-smooth. This implies that it is locally concave provided its com-
ponents BL(x; u1, [a0, b0]), Bcup(x; a0, b0), and BR(x; [a0, b0], u2) are locally
concave. As mentioned above, the function Bcup is concave by the definition
of a cup and Proposition 5.1. Concerning the functions BL and BR, they are
locally concave if and only if the following inequalities are fulfilled:

m′′
L
(u; a0) ≥ 0 for u ∈ (u1, a0);

m′′
R
(u; b0) ≤ 0 for u ∈ (b0, u2).

Now we get expressions for m′′
L
(u; a0) and m′′

R
(u; b0). Using equation (3.11)

differentiated once, we can expressm′′
L

in terms ofm′
L
. After that, using (3.11)
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one more time, we can express m′
L

in terms of m
L
. Applying these consider-

ations to m′′
L
(a0; a0), we obtain

m′′
L
(a0; a0) = ε−1

(
ε−1m

L
(a0; a0)− ε−1f ′(a0)− f ′′(a0)

)
.

Substituting expression (5.10) for m
L
(a0; a0) into this identity, we get

m′′
L
(a0; a0) = −ε−1

[
f ′′(a0)− f ′(b0)− f ′(a0)

2ε

]
= −ε−1DL(a0, b0).

Using (3.14), we finally have

m′′
L
(u; a0) = −ε−1DL(a0, b0)e(u−a0)/ε + ε−1eu/ε

a0∫
u

f ′′′(t)e−t/ε dt. (5.15)

Similar reasoning gives the formula for m′′
R
(u; b0):

m′′
R
(u; b0) = ε−1DR(a0, b0)e(b0−u)/ε + ε−1e−u/ε

u∫
b0

f ′′′(t)et/ε dt. (5.16)

As usual, we summarize this section in one proposition.

Proposition 5.3. Suppose b0 − a0 = 2ε and Ωcup(a0, b0) is a full cup. Con-
sider domains ΩL(u1, a0) and ΩR(b0, u2) adjacent to Ωcup(a0, b0). The Bell-
man candidate in the union ΩLR(u1, [a0, b0], u2) has the form

BLR(x; u1, [a0, b0], u2) =


BL(x; u1, [a0, b0]), x ∈ ΩL(u1, a0);

Bcup(x; a0, b0), x ∈ Ωcup(a0, b0);

BR(x; [a0, b0], u2), x ∈ ΩR(b0, u2),

(5.17)

where Bcup(x; a0, b0) can be restored by the linearity on the chords according
to (5.1). The functions BL(x; u1, [a0, b0]) and BR(x; [a0, b0], u2) can be calcu-
lated by (5.12) and (5.14), respectively. In addition, the following inequalities
must be fulfilled : {

m′′
L
(u; a0) ≥ 0 for u ∈ (u1, a0);

m′′
R
(u; b0) ≤ 0 for u ∈ (b0, u2),

(5.18)

where m′′
L
(u; a0) and m′′

R
(u; b0) can be calculated by (5.15) and (5.16).
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5.3 Optimizers on chords

We consider a domain Ωch foliated by chords (see Section 5.1). For every
point x ∈ Ωch, there is a unique extremal chord [A,B] passing through it.
Therefore, a delivery curve coming to x can only start at A or B, because
it must run along the extremal. Indeed, in the situation being considered,
we have left and right delivery curves: the segments [A, x] and [x,B]. Such
curves are generated by a step function ϕ that can take two values: a and b.
Namely, if x = α−A+ α+B, α− + α+ = 1, we set

ϕ(s) =

{
a, s ∈ [0, α−];

b, s ∈ (α−, 1].

We can see that ϕ is, indeed, an optimizer for x. Property (1) of Defini-
tion 2.13 follows from the fact that all the Bellman points generated by ϕ
lie on the chord [A,B]. Property (2) is fulfilled by the construction of ϕ. Fi-
nally, property (3) follows from the linearity of the Bellman candidate along
the chord [A,B].

Further, it is easy to see that the curve

γ
A

(s) =
(
〈ϕ〉

[0,s]
, 〈ϕ2〉

[0,s]

)
, s ∈ (0, 1],

is a left delivery curve that starts at A, runs along [A,B], and ends at x.
Similarly, we can define the right delivery curve γ

B
that starts at B and ends,

again, at x.
Now we consider the construction ΩLR(u1, [a0, b0], u2) described in Sec-

tion 5.2. Let W0 be the tangency point of the chord [A0, B0] and the upper
parabola. This point is the entry node for both domains ΩL(u1, a0) and
ΩR(b0, u2). After we connect A0 and W0 with the left delivery curve γ

A0

generated by the optimizer for W0, we can continue this curve up to every
point in ΩR(b0, u2) (see Section 3.3). On the other hand, the right delivery
curve γ

B0
that connects B0 and W0, can be continued up to every point in

ΩL(u1, a0).
We conclude that delivery curves can originate not only at ±∞, but also

in cups. Thus, we have all the information required for the construction of
delivery curves in domains adjacent to cups.

5.4 Function f ′′′ changes its sign from plus to minus

It turns out that the cup, together with two domains ΩL and ΩR adjacent
to it, always arises when f ′′′ changes its sign once, from plus to minus. We
state and prove the appropriate theorem.
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Theorem 5.4. Suppose 0 < ε < ε0, f ∈ W0
ε0

, and c0 6= ±∞. Then we can
build a full cup Ωcup(a0, b0) originated at c0. We also have

Bε(x; f) = BLR(x; −∞, [a0, b0],+∞),

where the function BLR is defined by (5.17).

First, we note that a cup is a local construction. Its existence under
the conditions of the theorem follows from the general lemma, in which the
function f is considered only in some neighborhood of c0.

Lemma 5.5. Consider a segment ∆ = [c − `0, c + `0], where c ∈ R is
its center and the positive number 2`0 is its length. Consider a func-
tion f ∈ C2(∆) ∩W 1

3 (∆). Suppose f ′′′ > 0 a.e. on the left half [c− `0, c]
of ∆ and f ′′′ < 0 a.e. on the right half [c, c+ `0]. Then there exist two
functions a(`) and b(`) = a(`) + `, ` ∈ (0, `0], with the following properties :

1) a(`) < c < b(`);

2) a(`) and b(`) solve equation (5.4);

3) DL

(
a(`), b(`)

)
< 0 and DR

(
a(`), b(`)

)
< 0;

4) a and b are differentiable functions such that a′ < 0 and b′ > 0.

Setting `0 = 2ε and using the lemma just stated, we see that the non-
intersecting chords [A(`), B(`)] form a full cup Ωcup(a0, b0) with ends a0 =
a(`0) and b0 = b(`0).

Further, since DL(a0, b0) < 0 and DR(a0, b0) < 0, it follows that condi-
tions (5.18) in Proposition 5.3 are satisfied. Suppose the domains ΩL(−∞, a0)
and ΩR(b0,+∞) adjoin our cup. Proposition 5.3 tells us that the function
BLR(x; −∞, [a0, b0],+∞) defined by (5.17) is a Bellman candidate in the
domain ΩLR(−∞, [a0, b0],+∞) = Ωε. Therefore, Statement 2.6 guarantees
that Bε ≤ BLR. The converse estimate Bε ≥ BLR follows from the existence
of optimizers for each point in Ωε (see Section 5.3). It remains to prove
Lemma 5.5.

Proof of Lemma 5.5. First, without loss of generality, we can set c = 0.
This follows from the linear substitution in all the conditions on the required
functions a and b.

Now we verify that for any `, 0 < ` ≤ `0, there exist points a and b = a+`
solving equation (5.4), and for such points the relation a < 0 < b is always
fulfilled. Note that for all the points a and b such that −`0 ≤ a < b ≤ 0, the
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left part of chord equation (5.4) is strictly smaller than its right part. Indeed,
the requirement on the sign of f ′′′ implies that f ′′ is strictly increasing on
[−`0, 0], and so f ′ is strictly convex on this interval. Thus, on (a, b) the
function f ′ is strictly less than the linear function whose graph contains the
points (a, f ′(a)) and (b, f ′(b)). This implies that the average of f ′ over [a, b]
is strictly less than the average of this linear function, i.e.

〈f ′〉
[a,b]

<
f ′(a) + f ′(b)

2
.

Similarly, for any points a and b such that 0 ≤ a < b ≤ `0, the left part of
equation (5.4) is strictly greater than its right part.

If we fix ` and set b = a + `, then we can treat the difference between
the left and right parts of (5.4) as a continuous function of a ∈ [−`0, 0]. We
see that this function takes both positive and negative values. Therefore, it
vanishes at some point a, and the pair a and b = a+ ` solves equation (5.4).
Besides, in view of our considerations in the beginning of the proof, we have
a < 0 and b > 0.

Now we prove that DL(a, b) < 0 and DR(a, b) < 0 if a and b solve equa-
tion (5.4). Consider the function

q(t) = f ′(t) + α1t+ α2,

where the coefficients α1 and α2 are chosen so that q(a) = q(b) = 0. It is
easily shown that such a function has the following properties:

1) q′′ = f ′′′;

2) equation (5.4) on the ends of chords is equivalent to the identity
〈q〉

[a,b]
= 0;

3) the inequalities DL(a, b) < 0 and DR(a, b) < 0 can be rewritten as
q′(a) < 0 and q′(b) < 0, respectively.

Further, by the condition on the sign of f ′′′, the function q is strictly convex on
[a, 0] and strictly concave on [0, b]. Thus, by simple geometric considerations,
q has at most one root on (a, b). If this root does not exist, then the identity
〈q〉

[a,b]
= 0 cannot hold (this identity means precisely that the areas of two

hatched domains on Figure 11 are equal).
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t0a b

q(t)

Figure 11: A function with zero mean (its convexity changes at t = 0).

But if q′(a) ≥ 0 or q′(b) ≥ 0, the function q has no roots on (a, b) by
geometric considerations. Thus, we have proved the estimates DL(a, b) < 0
and DR(a, b) < 0.

Now we find points a0 and b0 = a0 + `0 solving equation (5.4). This
equation can be written as Φ(a0, `0) = 0, where

Φ(a, `) = `
(
f ′(a) + f ′(a+ `)

)
− 2
(
f(a+ `)− f(a)

)
.

Differentiating Φ with respect to the first variable, we have

Φ′a(a, `) = `
(
f ′′(a) + f ′′(a+ `)

)
− 2
(
f ′(a+ `)− f ′(a)

)
= `
(
DL(a, b) +DR(a, b)

)
.

Therefore, Φ′a(a0, `0) < 0. Consequently, by the implicit function theorem,
there exists an interval (˜̀, `0] on which we can define a unique differentiable
function a(`) satisfying the identity a(`0) = a0 and, together with the func-
tion b(`) = a(`) + `, solving chord equation (5.4). In addition,

a′(`) = −Φ′`
(
a(`), `

)
Φ′a
(
a(`), `

) .
But

Φ′`
(
a, `
)

= `f ′′(a+ `) + f ′(a)− f ′(a+ `) = `DR(a, b),

and so −1 < a′(`) < 0 and b′(`) = a′(`) + 1 > 0 for ` ∈ (˜̀, `0].
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Further, let (˜̀, `0] be the union of all the appropriate intervals, i.e. the
intervals such that the identity Φ(a, `) = 0, together with the requirement
a(`0) = a0, defines a unique differentiable function a(`) on them. We claim
that ˜̀ = 0. Indeed, let ˜̀ > 0. We choose some decreasing sequence `n on
(˜̀, `0] that converges to ˜̀. Then an = a(`n) is an increasing sequence and,
besides, an < 0. We denote its limit by ã. By continuity, we have Φ(ã, ˜̀) = 0.
Then, using the implicit function theorem again, we can increase the interval
(˜̀, `0]. But this contradicts the assumption of its maximality.

As a result, we have the functions a and b defined on (0, `0] and satisfying
all the conditions required.

5.5 Examples

Example 7. A fourth-degree polynomial. In example 5, we discussed
the case of an arbitrary fourth-degree polynomial with positive leading coef-
ficient. Now we apply Theorem 5.4 to a fourth-degree polynomial with neg-
ative leading coefficient. Such a polynomial belongs to W0

ε0
for any ε0 > 0.

From Remark 2.3, it follows that, without loss of generality, we may set
f(t) = −(t − c)4. The conditions of Theorem 5.4 are satisfied for such a
function, and so it remains to find an analytic expression for the Bellman
function.

First, we are looking for a domain foliated by chords (a cup). Let a = c−σ
and b = c + τ . Then after this substitution and simple transformations,
equation (5.4) takes the form

(σ − τ)(σ + τ)2 = 0.

Since the ends of the chords must lie on the opposite sides from the point c
(the cup origin), the numbers σ and τ must have the same sign. Thus, their
sum cannot vanish, and so σ = τ . Therefore, all the chords are parallel to
each other and the ends of the cup are c− ε and c+ ε. For any σ ∈ [0, ε], the
Bellman function on [A,B], where a = c−σ and b = c+σ, can be calculated
by the formula

Bε(x1, x2) = Bε(x1, (a+ b)x1 − ab) = Bε(x1, 2cx1 − c2 + σ2)

=
f(c+ σ)− f(c− σ)

2σ
(x1 − c+ σ) + f(c− σ) = −σ4.

Now we find the Bellman function in the remaining domains. As we know,
the domain on the right of the cup is foliated by the right tangents, and so
the Bellman function in it is given by

Bε(x1, x2) = m
R
(u; c+ ε) (x1 − u)− (u− c)4,
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where u = x1+ε−
√
x2

1 − x2 + ε2. The functionm
R
(u; c+ε) can be calculated

by (5.13):

m
R
(u; c+ ε) = −4ε−1e−u/ε

u∫
c+ε

(t− c)3et/ε dt

= −8ε3e1−u−c
ε − 4(u− c)3 + 12ε(u− c)2 − 24ε2(u− c) + 24ε3.

On the left of the cup, the domain is foliated by the left tangents and we
have

Bε(x1, x2) = m
L
(u; c− ε) (x1 − u)− (u− c)4,

where u = x1−ε+
√
x2

1 − x2 + ε2. The functionm
L
(u; c−ε) can be calculated

by (5.11):

m
L
(u; c− ε) = −4ε−1eu/ε

c−ε∫
u

(t− c)3e−t/ε dt

= 8ε3e1+u−c
ε − 4(u− c)3 − 12ε(u− c)2 − 24ε2(u− c)− 24ε3.

6 General case

In this chapter we will obtain the function Bε(x; f) for f ∈WN
ε0

, N ∈ Z+.
In Sections 6.1 and 6.2, we will study another construction that is, in some
sense, a mixture of an angle and a cup. In Section 6.3, we will see that all our
constructions will suffice for the announced function Bε to be built. Also,
we will describe the general form of this function. Finally, in Section 6.5, we
will explain how to obtain Bε.

6.1 Trolleybus

The following considerations, which are not intended to be rigorous, will lead
us to a new construction (the last of those that are required for the general
case). We have seen in Section 4.3 that in the situation where f ′′′ changes
its sign from minus to plus, an angle Ωang can arise. If f ′′′ changes its sign
from plus to minus, then the cup Ωcup arises around the point where the sign
changes. Now we assume that f ′′′ changes its sign twice. Then one point
where the sign changes generates a cup and the other can generate an angle.
It is not difficult to imagine a situation where the angle and the cup stick
together. It turns out, that they can not only stick, but “mix” with each
other and generate one of the constructions shown in Figures 12 and 13. Now
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we give a rigorous description of such constructions and build corresponding
Bellman candidates.

x1

x2

x2 = x2
1

x2 = x2
1 + ε2

A0

B0

U1

U2

Ωtr,R

ΩRΩR

Ωcup

Figure 12: A right trolleybus Ωtr,R.

Suppose u1 < a0 < b0 < u2 and b0 − a0 ≤ 2ε. Consider a cup Ωcup(a0, b0)
(it may be not full) and the domains ΩR(u1, a0) and ΩR(b0, u2) foliated by
the extremal tangents. The quadrangular subdomain of Ωε, bounded by
the upper chord [A0, B0], the right tangents coming from A0 and B0, and
the arc of the upper parabola, is called the right trolleybus4 and is denoted
by Ωtr,R(a0, b0) (see Figure 12). Similarly, we can define the left trolleybus
Ωtr,L(a0, b0) and the corresponding construction shown in Figure 13.

4Glancing at Figure 12, the reader will hardly understand why such a name was chosen.
The point is the low artistic skills of the authors. When this construction was drawn on a
blackboard for the first time, the one-sided tangents, bounding the subdomain, were almost
parallel and looked like trolley poles drawing the electricity from the upper parabola.
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x1

x2

x2 = x2
1

x2 = x2
1 + ε2

B0

A0

U2

U1

Ωtr,L

ΩL ΩL

Ωcup

Figure 13: A left trolleybus Ωtr,L.

Note that for b0−a0 = 2ε the trolleybus degenerates into an angle adjacent
to a cup.

We consider the construction with the right trolleybus. Our goal is to
build a Bellman candidate in the domain

ΩRR(u1, [a0, b0], u2) = ΩR(u1, a0) ∪ Ωcup(a0, b0) ∪ Ωtr,R(a0, b0) ∪ ΩR(b0, u2).

We denote the function required by BRR(x; u1, [a0, b0], u2). In the trolleybus,
our candidate is linear by the minimality:

BRR(x; u1, [a0, b0], u2) = Btr,R(x; a0, b0)

= β1x1 + β2x2 + β0, x ∈ Ωtr,R(a0, b0).

We already know that the Bellman candidate coincides with Bcup(x; a0, b0)
in Ωcup(a0, b0) and with BR(x; b0, u2) in ΩR(b0, u2). The latter function is
not defined uniquely (the value m

R
(b0) must be chosen). The necessary and

sufficient conditions for the concatenation of Btr,R(x; a0, b0), Bcup(x; a0, b0),
and BR(x; b0, u2) to be continuous, can be written as

β1a0 + β2a
2
0 + β0 = f(a0);

β1b0 + β2b
2
0 + β0 = f(b0);

m
R
(b0) = β1 + 2(b0 − ε)β2.

(6.1)

Indeed, the first two identities must be fulfilled by the boundary condition,
and they imply that Btr,R is glued to Bcup continuously. The last identity
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guarantees that the concatenation of Btr,R(x; a0, b0) and BR(x; b0, u2) is con-
tinuous. We have obtained this equation expressing x2 in terms of x1 on the
right boundary of the trolleybus (see equation (R) in Section 3.1) and then
equating the coefficient of x1 with m

R
(b0).

Now, assume that the functions Bcup(x; a0, b0) and BR(x; b0, u2) are lo-
cally concave. In order for their concatenation with Btr,R(x; a0, b0) to be
locally concave, it is necessary that the jumps of the derivative in x2 are
non-positive on the corresponding boundaries of Ωtr,R. Using (5.8), we see
that on the lower boundary of the trolleybus (i.e. on the chord [A0, B0]), the
jump can be calculated as follows:

δ1 = β2 −
1

2
〈f ′′〉

[a0,b0]
.

On the right boundary of the trolleybus (i.e. on the right tangent coming
from B0), the jump can be calculated by the formula

δ2 = lim
u→b0+

t2(u)− β2,

where t2 = BR
x2

in ΩR(b0, u2). Using (3.7), (3.6), and, after that, the last
identity in (6.1), we obtain

lim
u→b0+

t2(u) =
m′

R
(b0)

2
=
f ′(b0)−m

R
(b0)

2ε
=
f ′(b0)− β1 − 2(b0 − ε)β2

2ε
.

Therefore, we have

δ2 =
f ′(b0)− β1 − 2β2b0

2ε
. (6.2)

Subtracting the first equation in (6.1) from the second one, we get

β1 + β2(a0 + b0) =
f(b0)− f(a0)

b0 − a0

= 〈f ′〉
[a0,b0]

. (6.3)

Using chord equation (5.4), we obtain

β1 + β2(a0 + b0) =
f ′(a0) + f ′(b0)

2
. (6.4)

Expressing β1 in terms of β2 and substituting the resulting expression
into (6.2), we have

δ2 =
f ′(b0)− f ′(a0)− 2β2(b0 − a0)

4ε

= −b0 − a0

2ε

(
β2 −

1

2
〈f ′′〉

[a0,b0]

)
= −b0 − a0

2ε
δ1.
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But δ1 and δ2 must have the same sign and so δ1 = δ2 = 0. In its turn, this
condition implies that the concatenation of Bcup(x; a0, b0), Btr,R(x; a0, b0),
and BR(x; b0, u2) is C1-smooth (because on the boundaries of the trolleybus
the derivatives in two non-collinear directions — along x2 and along the
corresponding boundary — are glued continuously). But if the concatenation
is C1-smooth and its components are locally concave, then it is also locally
concave. Therefore, the identity δ1 = 0 or

β2 =
1

2
〈f ′′〉

[a0,b0]
(6.5)

is a necessary and sufficient condition for the concatenation of the linear
function Btr,R(x; a0, b0) with the locally concave functions Bcup(x; a0, b0) and
BR(x; b0, u2) to be locally concave. Substituting expression (6.5) into (6.3),
we get

β1 = 〈f ′〉
[a0,b0]

− 1

2
(b0 + a0)〈f ′′〉

[a0,b0]
. (6.6)

Also, the expression for β2 can be substituted in (6.4):

β1 =
f ′(a0) + f ′(b0)

2
− (a0 + b0)

f ′(b0)− f ′(a0)

2(b0 − a0)

=
b0f
′(a0)− a0f

′(b0)

b0 − a0

.

(6.7)

Summing the first and the second equations in (6.1) and, after that, substi-
tuting expressions (6.5) and (6.6), we obtain

β0 =
b0f(a0)− a0f(b0)

b0 − a0

+
1

2
a0b0〈f ′′〉[a0,b0]

. (6.8)

Finally, substituting expressions (6.5) and (6.7) in the last equation into (6.1),
we have

m
R
(b0) =

b0f
′(a0)− a0f

′(b0)

b0 − a0

+ (b0 − ε)
f ′(b0)− f ′(a0)

b0 − a0

= f ′(b0)− ε〈f ′′〉
[a0,b0]

.

We note that if b0 − a0 = 2ε, then

m
R
(b0) = f ′(b0)− f ′(b0)− f ′(a0)

2
= m

R
(b0; b0),

where m
R
(u; b0) is given by (5.13) (that expression was defined only for the

case b0 − a0 = 2ε). Now we extend the notation m
R
(u; b0) to the general
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case b0 − a0 ≤ 2ε:

m
R
(u; b0) =

(
f ′(b0)− ε〈f ′′〉

[a0,b0]

)
e(b0−u)/ε + ε−1e−u/ε

u∫
b0

f ′(t)et/ε dt.

It is easy to prove that formula (5.16) for m′′
R
(u; b0) remains true.

Thus, we have

m
R
(u) = m

R
(u; b0), u ∈ (b0, u2),

and

BRR(x; u1, [a0, b0], u2) = BR(x; [a0, b0], u2), x ∈ ΩR(b0, u2),

where the function BR(x; [a0, b0], u2) is still given by (5.14).
Now we consider the concatenation of Btr,R and BR(x; u1, a0). Arguing

the same way as for the right boundary of the trolleybus, we get a necessary
and sufficient condition for our concatenation to be continuous on the left
boundary:

m
R
(a0) = β1 + 2(a0 − ε)β2.

Substituting expressions (6.5) and (6.7) into this formula, we obtain

m
R
(a0) =

b0f
′(a0)− a0f

′(b0)

b0 − a0

+ (a0 − ε)
f ′(b0)− f ′(a0)

b0 − a0

= f ′(a0)− ε〈f ′′〉
[a0,b0]

.
(6.9)

Using equation (3.6) twice, we have

m
R
(a0) = f ′(a0)− εm′

R
(a0) = f ′(a0)− ε

(
f ′′(a0)− εm′′

R
(a0)

)
.

This allows us to rewrite identity (6.9) as

m′′
R
(a0) = ε−1

(
f ′′(a0)− 〈f ′′〉

[a0,b0]

)
= ε−1DL(a0, b0), (6.10)

where DL is defined by the first relation in (5.7).
Now we verify that the resulting condition implies not only that the con-

catenation of BR(x; u1, a0) and Btr,R(x; a0, b0) is continuous, but also that
it is C1-smooth. We set t2 = BR

x2
in ΩR(u1, a0). Using (3.7), (3.6), and (6.9),

we get

lim
u→a0−

t2(u) =
m′

R
(a0)

2
=
f ′(a0)−m

R
(a0)

2ε
=

1

2
〈f ′′〉

[a0,b0]
= β2.
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As usual, this implies the C1-smoothness of the concatenation on the left
boundary of the trolleybus. But since the concatenation is C1-smooth, it is
locally concave provided all its components are locally concave.

Now we discuss the left trolleybus Ωtr,L(a0, b0) and construct a candidate
BLL(x; u1, [a0, b0], u2) in the union

ΩLL(u1, [a0, b0], u2) = ΩL(u1, a0) ∪ Ωcup(a0, b0) ∪ Ωtr,L(a0, b0) ∪ ΩL(b0, u2).

In order to build such a candidate, we can reason in the same way as we did
for BRR. We obtain

BLL(x; u1, [a0, b0], u2) = Btr,L(x; a0, b0)

= β1x1 + β2x2 + β0, x ∈ Ωtr,L(a0, b0),

where β1, β2 and β0 are the same as for the right trolleybus. Further, defining
the function m

L
(u; a0), u ∈ (u1, a0], by the formula

m
L
(u; a0) =

(
f ′(a0) + ε〈f ′′〉

[a0,b0]

)
e(u−a0)/ε + ε−1eu/ε

a0∫
u

f ′(t)e−t/ε dt

(clearly, this formula coincides with (5.11) if b0 − a0 = 2ε), we obtain

BLL(x; u1, [a0, b0], u2) = BL(x; u1, [a0, b0]), x ∈ ΩL(u1, a0),

where the function on the right is defined by (5.12). Note that formula (5.15)
for m′′

L
(u; a0) is still correct. Concerning the domain ΩL(b0, u2), we have

BLL(x; u1, [a0, b0], u2) = BL(x; b0, u2), x ∈ ΩL(b0, u2),

where the coefficient m
L
(u), participating in the definition of BL(x; b0, u2),

satisfies
m′′

L
(b0) = −ε−1DR(a0, b0). (6.11)

Now we note that by (5.15) identity (6.10) is equivalent to the equation

m′′
R
(a0) +m′′

L
(a0; a0) = 0, (6.12)

which has the same form as equation (4.2) for the vertex of an angle. Simi-
larly, from (5.16), it follows that relation (6.11) is equivalent to the equation

m′′
L
(b0) +m′′

R
(b0; b0) = 0. (6.13)

Now, we can formulate a proposition in which our construction with a
right trolleybus is described.
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Proposition 6.1. Let u1 < a0 < b0 < u2 and b0 − a0 ≤ 2ε. Consider a
cup Ωcup(a0, b0), two domains ΩR(u1, a0) and ΩR(b0, u2) foliated by the right
extremal tangents, and the linearity domain Ωtr,R(a0, b0) located between them
all. A Bellman candidate in the union ΩRR(u1, [a0, b0], u2) of these four do-
mains has the form

BRR(x; u1, [a0, b0], u2) =


BR(x; u1, a0), x ∈ ΩR(u1, a0);

Bcup(x; a0, b0), x ∈ Ωcup(a0, b0);

Btr,R(x; a0, b0), x ∈ Ωtr,R(a0, b0);

BR(x; [a0, b0], u2), x ∈ ΩR(b0, u2).

Here, Btr,R(x; a0, b0) = β1x1 + β2x2 + β0 is the linear function with the coef-
ficients given by (6.5), (6.7), and (6.8). In addition, the following conditions
must be satisfied : 

m′′
R
(u; b0) ≤ 0 for u ∈ (b0, u2);

m′′
R
(a0) +m′′

L
(a0; a0) = 0;

m′′
R
(u) ≤ 0 for u ∈ (u1, a0),

where m′′
L
(u; a0) and m′′

R
(u; b0) are given by (5.15) and (5.16), respectively.

We also give a symmetric proposition for a left trolleybus.

Proposition 6.2. Let u1 < a0 < b0 < u2 and b0 − a0 ≤ 2ε. Consider a cup
Ωcup(a0, b0), two domains ΩL(u1, a0) and ΩL(b0, u2) foliated by the left ex-
tremal tangents, and the linearity domain Ωtr,L(a0, b0) located between them
all. A Bellman candidate in the union ΩLL(u1, [a0, b0], u2) of these four do-
mains has the form

BLL(x; u1, [a0, b0], u2) =


BL(x; u1, [a0, b0]), x ∈ ΩL(u1, a0);

Bcup(x; a0, b0), x ∈ Ωcup(a0, b0);

Btr,L(x; a0, b0), x ∈ Ωtr,L(a0, b0);

BL(x; b0, u2), x ∈ ΩL(b0, u2).

Here, Btr,L(x; a0, b0) = β1x1 + β2x2 + β0 is the linear function with the coef-
ficients given by (6.5), (6.7), and (6.8). In addition, the following conditions
must be fulfilled : 

m′′
L
(u; a0) ≥ 0 for u ∈ (u1, a0);

m′′
L
(b0) +m′′

R
(b0; b0) = 0;

m′′
L
(u) ≥ 0 for u ∈ (b0, u2).
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6.2 Optimizers in trolleybuses

In this subsection we discuss delivery curves and optimizers in constructions
with trolleybuses. We treat in detail only the case of a right trolleybus.

Suppose B is a Bellman candidate in the whole domain Ωε and some
part of the corresponding foliation forms the construction ΩRR(u1, [a0, b0], u2)
described in Proposition 6.1. We already know how to build delivery curves in
the domain ΩR(u1, a0) and in the cup Ωcup(a0, b0)5 (see Sections 3.3 and 5.3).
Let A1 and B1 be the points where the rear and the front “trolley poles”
of Ωtr,R(a0, b0) touch the upper parabola: A1 =

(
a0 − ε, (a0 − ε)2 + ε2

)
and

B1 =
(
b0− ε, (b0− ε)2 + ε2

)
. Let γ be the left delivery curve that runs along

the upper parabola in ΩR(u1, a0) and ends at the point A1. This point is the
entry node of Ωtr,R and, as we will see later, the curve γ can be continued
from A1 up to each point of the trolleybus. To get an idea of how we are going
to do this, the reader can look at Figure 14, which shows various delivery
curves in the trolleybus.

x1

x2

x2 = x2
1

x2 = x2
1 + ε2

A0
B0

B1

A1

P0P

Figure 14: A right trolleybus Ωtr,R and delivery curves.

Let P0 be the point where the straight line, containing “the front pole”

5It is worth noting that ΩR(u1, a0) and Ωcup(a0, b0) are not connected with each other
by delivery curves. This situation should not be confused with the case of a full cup and
two domains adjacent to it.
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[B1, B0] of the trolleybus, intersects “the rear pole” [A1, A0]. We use Propo-
sition 3.5 from Section 3.3 twice and continue γ with the segment [A1, P0]
and, after that, with the segment [P0, B1]. An important feature of the curve
just constructed is that it “transits” through the trolleybus and ends at the
entry node of ΩR(b0, u2). Then this curve can be continued up to any point
of ΩR(b0, u2) (see Section 3.3 again). Now we consider the points lying in
the triangle with vertices P0, A0, and B0. The curve γ can be continued up
to any such a point x in the same way as above. First, we find the point P
where the straight line, containing the segment [x,B0], intersects the segment
[A1, A0]. After that, we continue γ with the segments [A1, P ] and [P, x].

It remains to consider the points of the trolleybus that get into the triangle
with vertices P0, A1, and B1. First, we find point P ∈ [A1, A0] in the
same way as described above and continue γ with the segment [A1, P ]. By
Proposition 3.5, the new curve is still a left delivery curve. We continue
it with the segment [P, x]. Although the conditions of Proposition 3.5 are
not satisfied this time, we still obtain a left delivery curve as a result. The
fact is that the conditions of another proposition — some modification of
Proposition 3.5 — are fulfilled. This modification allows us to overcome the
difficulties appearing from the fact that our curve is continued along the
segment intersecting the upper boundary transversally.

Proposition 6.3. Let γ be a convex left delivery curve that is generated
by a test function ϕ defined on I = [l, r]. Suppose γ ends with a straight
segment described in Proposition 3.5. By A0 we denote the point where the
line, containing this segment, intersects the lower parabola. On the lower
parabola, we also choose a point B0 such that 0 < b0 − a0 ≤ 2ε. Further, let
x ∈ [γ(r), B0] be a point such that the candidate B is linear on [γ(r), x]. Also,
we assume that on the straight segment that the curve γ ends with, there exists
a point γ(s0), s0 ∈ I, such that the line L, containing the segment [γ(s0), x],
does not intersect the upper parabola (see Figure 15). If we now continue the
curve γ with the segment [γ(r), x], then the resulting curve γ̃ remains a left
delivery curve. It is generated by the function

ϕ̃(s) =

{
ϕ(s), s ∈ I;

b0, s ∈ [r, r̃].
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x1

x2
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1 + ε2

A0
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L

γ(r)

γ(s0)

x

Figure 15: Illustration to the proof of Proposition 6.3.

Proof. The fact that ϕ̃, γ̃, and B are related by (2.6) and (2.7), can be
proved in the same way as in Proposition 3.5. Thus, we only need to verify
that ϕ̃ ∈ BMOε([l, r̃]). We take an arbitrary interval [c, d] ⊂ [l, r̃] and see
where the Bellman point x[c,d] =

(
〈ϕ〉

[c,d]
, 〈ϕ2〉

[c,d]

)
is located. If d ≤ r, then

the required estimate, as usual, follows from the fact that ϕ ∈ BMOε(I).
Therefore, it is sufficient to consider the case where d > r and the point
γ̃(d) = x[l,d] lies on the added segment [γ(r), x] (in such a case, this point, of
course, lies under the line L).

Next, if c > r, then ϕ̃ is identically equal to b0 on [c, d], and there is
nothing to prove. If s0 ≤ c ≤ r, then on [c, d] the function ϕ̃ is a step
function with values a0 and b0. But then x[c,d] lies on the chord [A0, B0],
which is contained in Ωε entirely, because |a0 − b0| ≤ 2ε.

Now, let c < s0. In this case, the point γ̃(c) = x[l,c] lies on the initial
delivery curve above L. But the points γ̃(c), x[c,d], and γ̃(d) lie on one line.
The last point is a convex combination of the first two and locates between
them. Hence, x[c,d] lies below L and, therefore, under the upper parabola.

Thus, since certain delivery curves in trolleybus intersect the upper
parabola transversally, it is not always possible to employ Lemma 2.16 and
Proposition 3.5 directly. But we can overcome this difficulty using Proposi-
tion 6.3.
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Figure 16: A left trolleybus Ωtr,L and delivery curves.

In left trolleybuses, delivery curves can be constructed exactly the same
way. We omit detailed arguments for this case (however, Figure 16 clarifies
the matter entirely).

6.3 Foliation in general case

Now, using the components already constructed, we build a global Bellman
candidate in the whole domain Ωε. First, we fix some signature Σ consisting
of a finite number of symbols R and L that are arranged in an arbitrary order.
We associate the pairs RL in this signature with angles, the pairs LR with full
cups, and the pairs RR and LL with trolleybuses (right and left, respectively)
attached to cups (not necessarily full). We suppose these angles and cups
are pairwise disjoint and arranged in the same order as the corresponding
pairs of symbols in Σ. We notice that all the domains located between them,
together with two domains on the edges, have the form ΩR or ΩL. We assume
that these domains are foliated by the suitable tangents. Then, by one of
Propositions 3.2, 5.3, 6.1, or 6.2, Bellman candidates are defined uniquely
in these domains. If we now assume that near each angle and each cup the
conditions of the corresponding proposition — either one of the propositions
just listed or Proposition 4.1 about an angle — are satisfied, then we obtain
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some candidate BΣ in the whole domain Ωε. It turns out that the Bellman
function we are looking for has precisely such a form.

x1

x2

x2 = x2
1

x2 = x2
1 + ε2

A1

B1

V1 A2

B2

V2

Figure 17: A global candidate BRRLRL.

Theorem 6.4. Suppose 0 < ε < ε0, N ∈ Z+, and f ∈ WN
ε0

. Then we can
choose a signature Σ such that a certain Bellman candidate BΣ corresponds
to it. In this case, we have Bε(x; f) = BΣ(x).

In order to prove this theorem, we need some preparation. First, we
present some new definitions.

Let c be a point where the third derivative f ′′′ changes its sign from
+ to −. By Lemma 5.5, there exist continuously differentiable functions
a(`) and b(`) = a(`) + ` on [0, 2ε] that generate a cup originated at c, i.e.
a(0) = b(0) = c. Together with the pair a and b we will need another pair
of mutually inverse functions ã and b̃. These functions have the same values
as a and b, but their arguments are different. They are the first coordinates
of the opposite ends of the chord. Namely, each of the pairs {ã(u), u} and
{u, b̃(u)} is a pair of points {a, b} satisfying the cup equation (5.4).

Fixing the cup size `, we define the following function D on [a(`), b(`)]:

D(u)
def
=

{
−DL(u, b̃(u)), a(`) ≤ u < c;

DR(ã(u), u), c < u ≤ b(`).
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Recall that the differentials DL(a, b) and DR(a, b) were introduced by (5.7):

DL(a, b) = f ′′(a)− 〈f ′′〉
[a,b]

, DR(a, b) = f ′′(b)− 〈f ′′〉
[a,b]

.

The function D can be naturally continued to c by zero. Note that the value
of ` determines the domain of D only, the value of D at any fixed point does
not depend on `.

Definition 6.5. The function

F (u, `)
def
=


eu/ε

[
D(a(`))e−a(`)/ε +

∫ a(`)

u

f ′′′(t)e−t/εdt
]
, u ∈ (−∞, a(`));

D(u), u ∈ [a(`), b(`)] ;

e−u/ε
[
D(b(`))eb(`)/ε +

∫ u

b(`)

f ′′′(t)et/εdt
]
, u ∈ (b(`),+∞) ,

defined on the entire real axis, will be called a force function or simply a
force.

It is natural to call the point c the source of the force F . We call [a(`), b(`)]
the screen of F . We refer to the left and right parts [a, c] and [c, b] as to the
left and right screens respectively.

Let us try to explain some mnemonic sense of the terminology introduced
above. We know that one can build a cup around the source of any force.
The reader can imagine that the force of any cup tries to push an angle away.
As a result, an angle between two cups will be placed exactly at the point
of balance of these two forces, where their sum is zero. There is only one
counter-intuitive point: a force pushing an angle to the right is negative, and
it is positive if it acts in the opposite direction. The segment [a(`), b(`)] is
called a screen because it screens, in a sense, the action of the force: we will
see that the larger the screen is the less (in absolute value) is the power off
the screen.

Some special cases should be mentioned separately. The formula for a
force without a screen (zero screen: ` = 0) is especially simple:

F (u, 0) =


eu/ε

∫ c

u

f ′′′(t)e−t/εdt, u ∈ (−∞, c] ;

e−u/ε
∫ u

c

f ′′′(t)et/εdt, u ∈ [c,+∞) .

Forces with sources at infinity provide the simplest cases of the last formula.
If c = +∞, then

F (u, `) = eu/ε
+∞∫
u

f ′′′(t)e−t/εdt, u ∈ (−∞,+∞) ,
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and if c = −∞, then

F (u, `) = e−u/ε
u∫

−∞

f ′′′(t)et/εdt, u ∈ (−∞,+∞) .

These two expressions do not depend on ` (a finite screen at infinity can-
not touch finite points). Therefore, we can always assume that the forces
originated at infinity have zero screens, i.e. ` = 0.

Note that the formula for a force almost coincides with the second deriva-
tive of the coefficient m in the expression for the Bellman function. Namely,
formula (5.15) for εm′′

L
(u, a(`)) gives the force on the left of the screen, and

formula (5.16) for εm′′
R
(u, b(`)) coincides with the same force on the right of

the screen. Thus, we glue two expressions for εm′′
R

and εm′′
L
, extending them

continuously to the screen [a(`), b(`)].
We introduce a few more notions.

Definition 6.6. An interval [ c, t+], where

t+ = t+(`)
def
= sup{t | F (s, `) ≤ 0, ∀s, c ≤ s ≤ t},

is called the right tail of the force F . The left tail is an interval [t−, c ], where

t− = t−(`)
def
= inf{t | F (s, `) ≥ 0, ∀s, t ≤ s ≤ c} .

The points t−(`) and t+(`) will be called the ends of the left and right tails
correspondingly.

We recall that the requirements on the signs of m′′
L
(u; a0) and m′′

R
(u; b0)

appear in Propositions 5.3, 6.1, and 6.2, where they guarantee the local
concavity of the candidate on the left and on the right of the cup. Note that
the tails are the maximal intervals where the force has the sign required.
They show the size of the maximal region around the cup that the tangents
can foliate.

Further, we recall that the equation

m′′
R
(v; b1) +m′′

L
(v; a2) = 0

appears in Proposition 4.1 as an equation for the vertex of the angle Ωang(v)
and, also, in Propositions 6.1 and 6.2 as an equation for one of the trolleybus
vertices. This inspires the following definition.
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Definition 6.7. Two forces are called balanced if they satisfy two following
conditions. First, their tails have non-empty intersection. Second, in this
intersection we can choose a point v lying strictly between the sources of the
forces and such that

F1(v, `1) + F2(v, `2) = 0 . (6.14)

This point v will be called the balance point and the equation above will be
called the balance equation. A family of forces is called balanced if either this
family consists of one element, or each pair of neighbor forces is balanced.

Suppose we have found a balanced family of forces with 2ε-screens such
that the union of the tails covers the entire real axis. Moreover, let no balance
point be inside any screen. Then, as it was explained in the beginning of this
section, we are done. We have the desired foliation consisting of alternating
cups and angles with vertices at balance points. The corresponding function
BΣ would be the desired Bellman candidate. However, if some points of
balance are inside the screens, then such a family does not help to finish the
construction so quickly. The following definition helps us to overcome these
difficulties.

Definition 6.8. A balanced family of force functions is called completely
balanced if it is under two following conditions. First, there are no balance
points inside any screen. Second, at least one end of each screen whose size
is less than 2ε coincides with a balance point.

We are now ready to state the proposition that immediately implies The-
orem 6.4.

Proposition 6.9. For any f ∈ WN
ε0

, there exists a family of completely
balanced forces such that their tails cover the entire axis.

Now, we explain how to derive our theorem from this proposition. In
the simplest case of one force, the Bellman function is already known (see
Theorem 3.9 for c = −∞, Theorem 3.10 for c = +∞, and Theorem 5.4
for a finite c). Thus, we consider the situation when we have several com-
pletely balanced forces whose tails cover the entire axis. For each force with
a source at a finite point, we build a cup whose size is equal to the size of
the corresponding screen. If a cup is not full, then we have a balance point
at least at one of its ends. We build the right or left trolleybus over such a
cup depending on where (at what end of the cup) we have a balance point.
After that, we construct the angles with vertices at the remaining balance
points. In such a way, we obtain a collection of disjoint constructions, which
includes cups, trolleybuses, and angles. We foliate all the remaining subdo-
mains by the left or right tangents. By our definition of balance points and
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tails, and also by Propositions 3.2, 4.1, 5.3, 6.1, and 6.2, we obtain a Bell-
man candidate BΣ with a corresponding signature Σ consisting of symbols R
and L. As usual, Statement 2.6 implies the estimate Bε ≤ BΣ, and the re-
verse inequality BΣ ≤ Bε follows from the existence of optimizers in each of
the constructions involved (the reader can easily imagine the delivery curves
that originate in the full cups or ±∞, “transit” through the trolleybuses,
and continue up to the angles).

6.4 Properties of force functions

In this section, we investigate the properties of force functions, needed to
prove Proposition 6.9.

Lemma 6.10. The strict inequality F < 0 is fulfilled at all interior points of
the right tail, except possibly for the points where f ′′′ changes its sign from +
to −. With the same possible exception, F > 0 at each interior point of the
left tail.

Proof. The fact that the strict inequality is fulfilled in the screen, was proved
in Lemma 5.5 (DL < 0 and DR < 0). Let F (u0, `) = 0 for some u0 ∈ (b, t+).
Then

F (u, `) =

u∫
u0

f ′′′(t)e−(u−t)/εdt

in some neighborhood of u0. Since F (u, `) ≤ 0, the function f ′′′ must be
non-positive in some right neighborhood of u0 and non-negative in some left
neighborhood, i.e. u0 coincides with one of the points cj.

We also prove two formulas we use for calculating derivatives of F .

Lemma 6.11.

dDL(a, b) =
(
f ′′′(a) +

2DL(a, b)

b− a
)
da, (6.15)

dDR(a, b) =
(
f ′′′(b)− 2DR(a, b)

b− a
)
db. (6.16)

Proof. We begin with writing down the derivative of the cup equation (5.6).
We use an invariant form not depending on the parametrization:

DR(a, b)db+DL(a, b)da = 0 . (6.17)
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Using this relation, we write down the differential of the average 〈f ′′〉
[a,b]

in

two different forms

d〈f ′′〉
[a,b]

=
f ′′(b)db− f ′′(a)da

b− a − f ′(b)− f ′(a)

(b− a)2
(db− da)

=
DRdb−DLda

b− a =
2DRdb

b− a = −2DLda

b− a .

This immediately yields both (6.15) and (6.16).

After this preparation, it is easy to find the partial derivative of the force
with respect to the screen size.

Lemma 6.12.

∂

∂`
F (u, `) =

(2

`
− 1

ε

)
−D(a)a′e−(a−u)/ε, u ∈ (−∞, a(`)) ;

0, u ∈ (a(`), b(`)) ;

−D(b)b′e−(u−b)/ε, u ∈ (b(`),+∞) ,

or

∂

∂`
F (u, `) =

(2

`
− 1

ε

) DLDR

DL +DR


e−(a−u)/ε, u ∈ (−∞, a(`)) ;

0, u ∈ (a(`), b(`)) ;

−e−(u−b)/ε, u ∈ (b(`),+∞) .

Proof. We can easily check this formulas by direct calculation. Consider, for
example, the case u < a:

∂

∂`
F (u, `) = eu/ε

[
− dDL(a, b)

d`
e−a/ε +DL(a, b)

a′

ε
e−a/ε + f ′′′(a)e−a/εa′

]
.

Using formula (6.15), we simplify this expression:

∂

∂`
F (u, `) = DL(a, b)

(1

ε
− 2

`

)
e−(a−u)/εa′.

Thus, we have got the first representation of the derivative. To obtain the
second one, we must express a′ in terms of DL and DR. Taking into account
that db = d`+ da and using (6.17), we have:

a′ = − DR(a, b)

DL(a, b) +DR(a, b)
.

Similarly, we can check the formulas for the case u > b.
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Corollary 6.13. The force is strictly increasing with respect to the screen
size on the right of the screen and strictly decreasing on the left. Inside the
screen, the force does not depend on this size.

Proof. In Lemma 5.5, it was proved that DL(a, b) < 0, DR(a, b) < 0, a′ < 0,
and b′ > 0. Therefore, on the whole interval ` ∈ (0, 2ε) we have

∂

∂`
F (u, `) > 0 for u > b ;

∂

∂`
F (u, `) < 0 for u < a .

Thus we are done.

Some simple corollaries of this fact are listed below.

Corollary 6.14. The tails grow as the screen shrinks.

Corollary 6.15. If ` > 0, then

F (u, `) > F (u, 0) for u > c ;

F (u, `) < F (u, 0) for u < c .

The last inequalities will be used together with the following relation
between two forces.

Lemma 6.16. Let F1 and F2 be two forces with sources c1 and c2, c1 < c2.
Then two following relations between these forces are fulfilled :

F1(u, `1) = e(c2−u)/εF1(c2, `1) + F2(u, 0) , u ≥ c2 ;

F2(u, `2) = e(u−c1)/εF2(c1, `2) + F1(u, 0) , u ≤ c1 .

Proof. The statement of the lemma becomes trivial being rewritten by the
definition of forces:

e−u/ε
[
D1(b1)eb1/ε +

u∫
b1

f ′′′(t)et/εdt

]

= e(c2−u)/εe−c2/ε
[
D1(b1)eb1/ε +

c2∫
b1

f ′′′(t)et/εdt

]
+ e−u/ε

u∫
c2

f ′′′(t)et/εdt ,

u ∈ [c2,+∞) .

The second identity is similar.
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We state the following simple corollary.

Corollary 6.17. Let F1 and F2 be two forces with sources c1 and c2, c1 < c2.
If c2 gets into the tail of F1, then F1(u) ≤ F2(u) for u ≥ c2. If c1 gets into
the tail of F2, then the same inequality is true for u ≤ c1.

Proof. If c2 ≤ t+1 , then using Lemma 6.16 and Corollary 6.15 we can write
the following inequality:

F1(u, `1) = e(c2−u)/εF1(c2, `1) + F2(u, 0) ≤ F2(u, 0) ≤ F2(u, `2)

for u ∈ [c2,+∞). In a similar way, if c1 ≥ t−2 , then

F2(u, `2) = e(u−c1)/εF2(c1, `2) + F1(u, 0) ≥ F1(u, 0) ≥ F1(u, `1)

for u ∈ (−∞, c1].

Till now, we were investigating the dependence of a force from the size
of its screen. Now we treat the behavior of a force with respect to the first
variable.

Lemma 6.18.

∂

∂u
F (u, `) =



−f ′′′(u) + ε−1F (u, `), u ∈ (−∞, a(`)) ;

−f ′′′(u) +
2

b̃(u)− u
F (u, `), u ∈ (a(`), c) ;

f ′′′(u)− 2

u− ã(u)
F (u, `), u ∈ (c, b(`)) ;

f ′′′(u)− ε−1F (u, `), u ∈ (b(`),+∞) .

Proof. The formulas for the derivatives out of the screen are evident. We use
Lemma 6.11 to calculate D′(u). On the left screen, we have a = u, b = b̃(u),
and D(u) = −DL(u, b̃(u)). Therefore, formula (6.15) yields

D′(u) = −f ′′′(u) +
2D(u)

b̃− u
.

Similarly, using (6.16), we get

D′(u) = f ′′′(u)− 2D(u)

u− ã
on the right screen.
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To determine balance points, we need to know the behavior of the sum
of two neighbor forces.

Corollary 6.19. If F1 and F2 are two forces with sources c1 and c2, c1 < c2,
then

ε
∂

∂u
(F1(u, `1) + F2(u, `2)) =



F2(u, `2)− 2ε

u− ã1(u)
F1(u, `1), u ∈ (c1, b1) ;

F2(u, `2)− F1(u, `1), u ∈ (b1, a2) ;

2ε

b̃2(u)− u
F2(u, `2)− F1(u, `1), u ∈ (a2, c2) .

Corollary 6.20. If F1 and F2 are two forces with sources c1 and c2, c1 < c2,
then the sum F1 +F2 is strictly increasing in the intersection of the right tail
of F1 and the left tail of F2.

Proof. By the formula from the preceding corollary, we have ∂
∂u

(F1 +F2) > 0
for all u ∈ (c1, t

+
1 )
⋂

(t−2 , c2), except possibly for a finite number of points (see
Lemma 6.10).

Corollary 6.21. If F1 and F2 are two forces with sources c1 and c2 such
that c1 < t−2 ≤ t+1 < c2, then the sum F1 + F2 has exactly one root in the
intersection of the tails, [t−2 , t

+
1 ].

Proof. By the preceding corollary, the sum F1 + F2 is strictly increasing on
[t−2 , t

+
1 ]. Therefore, since the continuous function F1 + F2 has opposite signs

at t−2 and t+1 (because Fi(t
±
i ) = 0), it has exactly one root on this interval.

We conclude our investigation of the force functions with other two im-
portant facts.

Lemma 6.22. If the source of a force function belongs to a tail of another
force, then both tails of the first force are included in the tail of the second.

Proof. First, we note that both sources of two forces cannot be covered by
the tails of each other. Indeed, if this occurs, the sum F1 + F2 would be
non-negative at the left end of the segment [c1, c2] (F1(c1) = 0, F2(c1) ≥ 0)
and non-positive at its right end (F1(c2) ≤ 0, F2(c2) = 0). But since F1 +F2

is strictly increasing on [c1, c2] (see Corollary 6.20), this is impossible.
Assume that c2 lies in the right tail of F1. We have to check that both tails

of F2 are in the right tail of F1, i.e. [t−2 , t
+
2 ] ⊂ [c1, t

+
1 ]. We have just proved

that c1 < t−2 . The second inequality t+1 > t+2 is contained in Corollary 6.17.
The case where c1 is in the left tail of F2, can be treated similarly.
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Lemma 6.23. If two forces are balanced, then the source of one of them
cannot lie in a tail of another one.

Proof. Let c1 < c2. If we assume that c1 ≥ t−2 , then

F1(c1) + F2(c1) = F2(c1) ≥ 0.

If c2 ≤ t+1 , then
F1(c2) + F2(c2) = F1(c2) ≤ 0.

In any case, the sum F1 + F2 cannot have a root on (c1, c2), i.e. the forces
F1 and F2 cannot be balanced.

6.5 Algorithm

Cleaning. Consider some collection of points {ck}Nk=0 and forces {Fk} gen-
erated by these points. Then we can remove from the collection those points
ck that lie in a tail of some force function Fj, j 6= k. We call such an op-
eration the cleaning. We denote the set {ckj}mj=0 of points that remain after
the cleaning by {ck}Nk=0, though the number N may have changed. What is
more, the symbol ck may denote another point after cleaning.

The union of forces’ tails cannot become smaller after the cleaning. In-
deed, the cleaning removes only those forces whose tails are contained entirely
in a tail of some other force.

Compression. Let {Fk} be a balanced collection of forces. Suppose
some uj+1 — the balance point of Fj and Fj+1 — got into the screen of
Fj. We generate a new collection of forces by the following rule. First, we
reduce the screen of Fj in such a way that uj+1 becomes the right end of this
screen. The point uj+1 remains to be a balance point of newly defined Fj and
old Fj+1. The reduction of the screen enlarges the tails of Fj, so they could
cover some neighbor points ck. Then we have to make the cleaning. The
procedure just described is called the right compression. A similar procedure
(the decreasing of `j+1 and the cleaning), where uj+1 gets into the screen of
Fj+1, is called the left compression. We note that the left compression can
change the structure of the force collection only on the right of uj+1, and the
right compression does not change the structure of the forces on the right of
uj+1.

Indeed, consider the right compression. The new tail of the force cannot
reach the point cj+1 (see Lemma 6.23), because the forces Fj and Fj+1 are
still balanced. So, all the forces on the right of uj+1 remain the same. But
what can happen on the left? Nothing can happen provided j = 0: either
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c0 = −∞ and there is nothing on the left, or the point c0 is the last point and
its left tail still reaches −∞. But if j > 0, the numeration of the remaining
forces could change. Assume that the former point cj got a number i, i ≤ j,
after the compression. The balance point of the forces Fi and Fi−1 could move
only to the left, because the new force Fi is not less than the old one (either
by Lemma 6.13 if there was no cleaning, or by Corollary 6.17 if the cleaning
was performed). Consequently, the only new balance point that could get
inside a screen, is the point in the right screen of Fi−1. Thus, the new balance
points cannot get into the left screens after the right compression. The only
point that can get into the right screen, lies on the left of the compressed
screen.

The situation is symmetric for the left compression. All the changes occur
on the right of the screen being compressed. What is more, the only screen
that can get a new balance point is the left screen of the first newly defined
force on the right of the screen being compressed.

The whole algorithm consists of a series of left compressions beginning
from F1 and going to the right, and the right compressions being performed
from right to left. Of course, we can change the order of the left and the
right compressions. We note, that in fact we begin not from the leftmost and
rightmost forces, because there are no balance points both on the left of c0

and on the right of cN . Indeed, either c0 = −∞, or the left tail of F0 fills the
ray (−∞, c0]. Similarly, either cN = +∞, or the right tail of FN fills the ray
[cN ,+∞).

Our algorithm begins with the cleaning of the family {Fk(u, 2ε)}Nk=0. The
tails of neighbor forces have non-empty intersection, because [cj−1, vj] lies in
the tail of Fj−1, and [vj, cj] lies in the tail of Fj. This property persists after
the cleaning, and by Lemma 6.21 we got a balanced family of forces.

Thus, in order to prove that the algorithm provides a system balanced
completely, it remains to verify that there are no balance points inside the
screens. Indeed, one of the ends of the small screens (those that are smaller
than 2ε) coincides with a balance point. Each small screen was compressed,
so a balance point arrived at one of its ends. All the points that lied inside
the left screens were sent to the boundary of their screens, as we performed
the left compressions. Hence, we removed all the balance points from the
left screens with the left compressions, what is more, this procedure did not
send any balance points into the right screens. Similarly, the passage from
right to left (execution of the right compressions) removed the balance points
from the right screens and did not change the situation inside the left ones.
So there are no balance points inside the screens, and we are done.
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The only thing we have to mention is that the union of tails of the achieved
collection coincides with the whole real line. This is a consequence of the
fact that all the tails of the initial family cover the whole line, and both the
cleaning and the compression do not reduce this cover.

6.6 Examples

Example 8. A fifth-degree polynomial. As usual, it is the third deriva-
tive that mainly influences the geometry of extremals. So, we have to choose
essential parameters in the formula for the third derivative, in order to deal
with more pleasant expressions throughout our computations. Using Re-
marks 2.3 and 2.4, we can investigate only the case

f =
1

60
t5 − d

6
t3.

The easiest case appears when d ≤ 0. Then we have f ′′′ ≥ 0, so the whole
parabolic strip is foliated by the left tangents, due to Corollary 3.11. So we
assume that d > 0. Therefore, the function f ′′′ has two roots:

u± = ±
√
d. (6.18)

In our case, the function f ′′′ is positive on (−∞, u−)∪(u+,+∞) and negative
on (u−, u+). Thus, c0 = u−, v1 = u+, and c1 = +∞.

Consider the force originated at +∞:

F1(u) = eu/ε
+∞∫
u

f ′′′(t)e−t/εdt = u2ε+ 2uε2 + 2ε3 − dε. (6.19)

By Theorem 3.10, the whole domain Ωε is foliated by the left tangents pro-
vided this value is non-positive everywhere, i.e. the left tail of F1 covers the
entire real axis. It is clear that

F1(u) ≥ 0 ⇐⇒ ε ≥
√
d. (6.20)

The last inequality can be easily reformulated in terms of the distance be-
tween the roots:

u+ − u− ≤ 2ε. (6.21)

So, if condition (6.20) is fulfilled, then the whole parabolic strip is foliated
by the left tangents, i.e. Bε = BL. Now, we suppose

ε <
√
d. (6.22)
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It is worth mentioning that this condition is equivalent to u+ − u− > 2ε.
In other words, f ∈ W1

ε for every ε. We can expect either Bε = BLL or
Bε = BLRL, because the case Bε = BL has already been excluded. Therefore,
we have to balance two forces: F0 originated at c0 = −

√
d and F1 originated

at c1 = +∞. There are two options: the balance point is either inside the
screen of F0 or outside it. In the first case we have to choose `, ` ≤ 2ε,
(the size of the screen) such that the balance point v coincides with the
right end b(`) of the screen, and Bε = BLL. In this situation, the balance
equation (6.14) is

F0(v, `(v)) + F1(v) = 0 . (6.23)

In the second case, the function F0 has 2ε-screen and the balance equation
is

F0(v, 2ε) + F1(v) = 0 . (6.24)

The function F1 is given by (6.19). In order to avoid unnecessary com-
putation, we do not write down the general expression for F0. We have to
calculate this function at the end of the right screen for ` ∈ (0, 2ε] and in the
right tail off the screen for ` = 2ε. In any case, we need the expression for
the right differential DR.

For this purpose, we write down equation (5.4) for the cup with origin
c0 = −

√
d. After that, we express the left end of the cup in terms of the

right one, i.e. find the function ã, and after that find the relation between
all the parameters of the cup: a, b, and `.

In our case, the cup equation

f(a)− f(b)

a− b − f ′(a) + f ′(b)

2
= 0

turns into
1

120
(a− b)2(3a2 + 4ab+ 3b2 − 10d) = 0.

Since a 6= b, we have two possible solutions:

a±(b) =
−2b±

√
30d− 5b2

3
.

To satisfy the initial condition ã(u−) = u−, we have to choose ã = a−, i.e.

ã(b)
def
=
−2b−

√
30d− 5b2

3
. (6.25)

Solving the equation b− ã(b) = `, we get

b(`) =
1

2
`−

√
d− 1

20
`2. (6.26)

84



We have chosen the minus sign for the square root, because the chord must
shrink to the origin of the cup as ` → 0. Let b∗ denote the right end of the
2ε-screen, then

b∗ = ε−
√
d− 1

5
ε2. (6.27)

So we have to look for a solution of the equation

F (v) = 0 ,

where

F (v) =

{
F0(v, `(v)) + F1(v) , −

√
d ≤ v ≤ b∗ ;

F0(v, 2ε) + F1(v) , b∗ ≤ v < +∞ .
(6.28)

Calculating the expression for DR(a, b) by definition (5.7), we get

DR(a, b) =
1

30
(b− a)2(3b+ 2a). (6.29)

We substitute b = v and a = ã(v) from (6.25) and see that

F0(v) =
1

405

[
100v3 − 225vd− (30d− 5v2)3/2

]
for v ≤ b∗.

Thus, we have

F (v) =
1

405

[
100v3 − 225vd− (30d− 5v2)3/2

]
+ ε
[
(v + ε)2 + ε2 − d

]
(6.30)

for v ∈ [u−, b∗].
Now, we suppose v ∈ [b∗,+∞). Substituting a∗ = b∗ − 2ε into (6.29), we

get

DR(a∗, b∗) =
2ε2

15

(
ε− 5

√
d− 1

5
ε2

)
.

The integral term in F0 is

e−v/ε
v∫

b∗

f ′′′(t)et/ε dt

= ε
[
(v − ε)2 + ε2 − d

]
− ε
[
(b∗ − ε)2 + ε2 − d

]
e−(v−b∗)/ε.

As a result, we have the following formula for v ∈ [b∗,+∞):

F (v) = −2ε2

3

(
ε+

√
d− 1

5
ε2

)
e−(v−b∗)/ε +

[
2v2 + 4ε2 − 2d

]
ε. (6.31)
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We are also interested in the critical value ε∗ that separates these two
cases. The function F (v) has a root on [b∗,+∞) for ε < ε∗, and this case
corresponds to BLRL. For ε > ε∗, there is a root on [u−, b∗], and the desired
solution is BLL. In the boundary case ε = ε∗, we get the function BLL with
the full cup and an angle adjacent to it. We obtain that critical value ε∗ from
the equation

F (b∗) = 0.

Although formulas (6.31) and (6.30) give the same value at b∗, it is more
convenient to use the first one, because we have already used the identity
b∗ − a∗ = 2ε. So,

F (b∗) = −2ε2

3

(
ε+

√
d− 1

5
ε2

)
+
[
2b2
∗ + 4ε2 − 2d

]
ε.

Substituting (6.27) for b∗, we get

F (b∗) =
2ε2

15

(
37ε− 35

√
d− 1

5
ε2

)
. (6.32)

Consequently, the desired critical value ε∗ is

ε∗ =
35√
1614

√
d.

First, we note that limv→+∞ F (v) = +∞. Second, F (u−) = F1(u−) < 0.
The first claim follows from (6.31), the second is a consequence of inequal-
ity (6.22). Indeed, once it is fulfilled, the inequality F1(−

√
d) < 0 is satisfied

by virtue of (6.20).
Thus, the existence of the root on (u−,+∞) is clear. In order to get

a more precise localization of the root, we transform F (b∗) expressing d in
terms of ε∗ in (6.32):

F (b∗) =
2ε2

15

(
37ε− 35

√
1614

352
ε2
∗ −

1

5
ε2

)
=

1076

5
· ε2(ε2 − ε2

∗)

37ε+
√

1614ε2
∗ − 245ε2

.

We see that the last expression is negative for ε < ε∗. Thus, the solution
BLRL is realized (i.e. the angle lies on the right of b∗), because the continuous
function F must have a root on (b∗,+∞). In the case ε > ε∗, the solution is
BLL, because F has a root on (u−, b∗).

We sum up our results in a proposition.

Proposition 6.24. Suppose f(t) = t5 + pt4 + qt3 + P2(t) is a fifth-degree
polynomial, where P2 is an arbitrary quadratic polynomial. Then an analytic
expression for the Bellman function (1.4) is determined by the value d

ε2
, d =

p2

25
− q

10
, as follows.
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• If d
ε2
≤ 1, then Theorem 3.10 works : Ωε is fully foliated by left tangents,

Bε(x) = BL(x; −∞,+∞).

• If 1 < d
ε2
≤ 1614

1225
, then Bε(x) = BLL(x; −∞, [ã(v), v],+∞) (see Propo-

sition 6.2), where v is the root of (6.30) and a(v) is defined by (6.25).
A single left trolleybus is realized in Ωε.

• If 1614
1225

< d
ε2

, then Bε(x) = BLRL(x). There is a full cup with the origin
at u− (where u− is the left root of f ′′′) and a separated angle with the
vertex at the root of (6.31).

Proposition 6.25. Suppose f(t) = −t5 + pt4 − qt3 + P2(t) is a fifth-degree
polynomial, where P2 is an arbitrary quadratic polynomial. Then an analytic
expression for the Bellman function (1.4) is determined by the value d

ε2
, where

d = p2

25
− q

10
. In this case, the extremals of Bε are symmetric to the extremals

for t5 + pt4 + qt3 with respect to the y-axis.

• If d
ε2
≤ 1, then Bε(x) = BR(x; −∞,+∞).

• If 1 < d
ε2
≤ 1614

1225
, then Bε(x) = BRR(x; −∞, [v, b̃(v)],+∞).

• If 1614
1225

< d
ε2

, then Bε(x) = BRLR(x).

We set ρ = 0 if the equation f ′′′ = 0 has no solutions. Otherwise, we set
ρ = |u+ − u−|, where u− and u+ are the roots of f ′′′(t) = 0. Now we can treat
the statement about the fifth-degree polynomial in terms of ρ. If ρ satisfies
the inequality ρ < 2ε, then the domain is foliated by the tangents entirely
(their direction is determined by the leading coefficient of the polynomial).
Next, if ρ = 2ε, there appears a zero-length trolleybus in the point where
f ′′′ changes its sign from + to − (notice that the condition ρ = 2ε makes
the segment, connecting the roots of the third derivative of the polynomial,
to touch the upper parabola). Further, in the case 2ε < ρ < 2

√
1614
35

ε, the

trolleybus occurs. In the case ρ = 2
√

1614
35

ε, the trolleybus sits on the full cup.

If ρ > 2
√

1614
35

ε, there is a full cup and an angle separated from it.
The reader is welcome to watch a series of pictures (see Figure 18), where

we fix one root of f ′′′ (e.g. u−), while the second one u+ runs away from it.
The red line denotes the segment connecting U− and U+.
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2ε
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A

B

x1

x2

u+−u−
2ε

= 1.255
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U+

A

B V x1

x2

u+−u−
2ε

= 1.612
U−

U+

A

B

V

Figure 18: Pictures for Example 8.
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7 Conclusion

We conclude the paper with a brief description of results we achieved and
knowledge we acquired while writing it. But first we describe the things we
understood from the beginning but did not write down in order to simplify
our arguments.

We have not described all the geometric structures of extremals that can
occur. To avoid the mixing of the cups, we have assumed that the roots
of f ′′′ are well separated. A figure that arises if two cups meet together is
called a multicup. Another new figure is a birdie. Though, it occurs in this
text implicitly: it is the union of a non-full cup and two angles adjacent to it
from both sides (if there is only one angle, we have a trolleybus). Formally
speaking, we can say that we have already considered this figure. Indeed,
we can treat it as a union of a trolleybus and an angle; the tangent domain
between them has reduced to a single extremal. However, it is more conve-
nient to think of this construction as a figure of some new type. The reason
is that it has its own dynamical properties: it can either be stable or break
into a trolleybus and an angle.

Now we discuss the dynamics in ε, i.e. we fix a boundary function f
and observe the evolution of the foliation. For ε small enough, the picture
is relatively simple: we have a sequence of alternating cups and angles that
sit near the roots of f ′′′. When ε increases, the cups grow and the angles
move from side to side. We know that when some angle meets a cup, they
form a trolleybus. But there can be more difficult constructions when several
figures meet together (e.g., a birdie or a multicup mentioned above), and we
will study their evolutional properties in the forthcoming paper. What is
more, we will provide another algorithm for the calculation of our Bellman
function, based on the evolutional approach. It will allow us to calculate the
Bellman function for all ε simultaneously and to find critical values of ε (we
already saw such a value ε∗ in the last example) in which the structure of
the picture changes.

Surely, we will abandon the absurd condition f ′′′ 6= 0 a.e. and, therefore,
“thick” roots (intervals where f ′′′ ≡ 0) will appear. This will bring a multicup
built on a continuum of zero cups. We did not consider this case here in order
to avoid multicups.

Also we are going to make the function f less smooth. Some Bellman
functions with boundary functions that have jumps are already known. In
general, we understand the nature of the subject, though not all the formal
proofs are still written down. We have a hypothesis that the geometric picture
for non-smooth f can be obtained by passing to the limit in an appropriate
sequence of smooth functions. For example, this approach explains the fact
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that if the function f has a jump at some point, then for all ε there is a
singular cup. Indeed, we have f ′′′ = δ′′ at that point, so at least two changes
of sign are “compressed” there.

Finally, we should mention the study of the Bellman function behavior at
the limit value ε0 of the parameter ε. By this we mean that for all ε greater
than ε0, the Bellman function is infinite. Surprisingly, the set of ε for which
the Bellman function is finite, can be both closed and open. The case of an
open set happens, for example, for the integral John–Nirenberg inequality.
We want to achieve the Bellman function not only for all values ε, ε < ε0,
but also for ε = ε0.

To end up the conclusion, we say a few words about what lies beyond
BMO. It is widely known that for the John–Nirenberg inequality and for the
reverse Hölder inequality for the Ap-weights, the Bellman functions can be
constructed similarly (compare [12, 13, 9] and [14, 11, 7]). So we will employ
the technique designed in this paper not only for the parabolic strip, but in
a much more general setting.
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