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In this Note we describe our results on construction of the Bellman function solving an
extremal problem for a large class of integral functionals on BMO.
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r é s u m é

Dans cette Note, nous décrivons nos résultats sur la construction de la fonction de Bellman
qui résout un problème extrémal pour une grande classe de formes linéaires intégrales sur
BMO.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Symbols I and J always denote subintervals of the real line R. We use the following notation for the average of an
integrable function ϕ over an interval J :

〈ϕ〉 J

def= 1

| J |
∫

J

ϕ(t)dt.

Recall that the BMO space with quadratic (semi-)norm can be defined as

BMO(I)
def=

{
ϕ ∈ L2(I): ‖ϕ‖2

BMO(I)

def= sup
J⊂I

〈∣∣ϕ − 〈ϕ〉 J

∣∣2〉
J
< +∞

}
.

Moreover, we introduce the Bellman point of ϕ:

b(ϕ, J )
def= (〈ϕ〉 J ,

〈
ϕ2〉

J

) ∈ R2.

For ε > 0 fixed, consider the parabolic strip

Ωε
def= {

x = (x1, x2) ∈ R2: x2
1 � x2 � x2

1 + ε2}
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and the Bellman function

Bε(x; f )
def= sup

{〈 f ◦ ϕ〉I : ‖ϕ‖BMO(I) � ε, b(ϕ, I) = x
}

defined for x ∈ Ωε .
We list some simple properties of this Bellman function:

– it does not depend on the interval I;
– it satisfies the boundary condition: Bε(t, t2; f ) = f (t).

2. Our results

The main aim of the authors is to express the Bellman function Bε( · ; f ) in terms of f . The knowledge of an explicit
formula for this function provides the sharp constants in integral inequalities on BMO. Several results of this type were
achieved earlier:

– f (t) = |t|p , the sharp constants in L p estimates (see [2,5]);
– f (t) = χ(−∞,−λ)∪(λ,+∞) , λ > 0, the weak form of the John–Nirenberg inequality (see [6,8]);
– f (t) = et , the integral form of the John–Nirenberg inequality (see [4,3]).

The next statement plays a crucial role in hunting for the function Bε .

Proposition 2.1. If a locally concave function G on Ωε majorizes the function Bε on the lower parabola, i.e., G(t, t2) � f (t), then it
majorizes the function Bε in the entire domain Ωε .

Thus, it is reasonable to look for the minimal locally concave function B on Ωε that satisfies the boundary condition

B
(
t, t2) = f (t). (1)

In fact, the minimal locally concave function coincides with the required function Bε . Indeed, clearly, it dominates Bε . In
order to prove the converse inequality for every point x ∈ Ωε , it suffices to find a function ϕ ∈ BMOε(I) such that x = b(ϕ, I)
and B(x) = 〈 f (ϕ)〉I . These functions are called optimizers.

Theorem 2.2. Suppose ε0 > 0, the function f lies in C2(R) ∩ W 3
1 (R, e−|t|/ε0), and the following additional conditions on the third

derivative are satisfied: f ′′′ �= 0 a.e. on R, there are only finitely many points where f ′′′ changes its sign, and these points are pairwise
separated at least by 2ε0 . Then the Bellman function Bε coincides with the minimal locally concave function on Ωε that satisfies the
boundary condition (1). Moreover, Bε ∈ C1(Ωε).

Any smooth locally concave function B has negative semidefinite Hessian. What is more, such a minimal function satisfies
the homogeneous Monge–Ampère equation

det(H) = 0; H =
⎛
⎝

∂2 B
∂x2

1

∂2 B
∂x1∂x2

∂2 B
∂x1∂x2

∂2 B
∂x2

2

⎞
⎠ . (2)

The general theory of Monge–Ampère equations (see, for example, [7]) asserts that the integral curves (extremals) of
the vector field generated by the kernel of the Hessian are line segments. First derivatives of B are constant along these
extremals and the function B itself is linear on them. We find the geometric picture of the foliation of Ωε by the extremals
and by subdomains where the Hessian is zero. If the foliation is found, one can recover the function B by using its linearity
on the extremals and minimality.

Taking advantage of minimality, we can assert that the extremals cannot cross the upper bound of Ωε transversally and
cannot cross each other. Moreover, either both endpoints of each extremal lie on the lower parabola or one lies on the lower
parabola and the other on the upper parabola. In the second case, the extremal must touch the upper parabola (see Fig. 2).
In addition, the subdomains where B is linear can occur. If the extremal connects two points on the lower parabola, then
one can easily restore the function B on this extremal by using linearity and the boundary condition (1). If the extremal
touches the upper parabola, then we can choose the slope coefficient. To be precise, the function B on such an extremal
can be defined as

B(x1, x2) = f (u) + m(u)(x1 − u), (3)

where u is the abscissa of the endpoint that lies on the lower parabola, and m = m(u) is the slope coefficient on this
extremal.

The next statement helps to find the foliation and the function m for f given.
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Fig. 1. The domains ΩL and ΩR.

Fig. 1. Les domaines ΩL et ΩR.

Fig. 2. A cup Ωcup lying between ΩL and ΩR.

Fig. 2. Une écuelle Ωcup entre ΩL et ΩR.

Proposition 2.3. Let B be defined by (3) in a subdomain ΩR (ΩL) that is foliated by the right (left) tangents to the upper parabola (see
Fig. 1) and satisfies the boundary condition (1). Then its first derivatives ∂ B

∂x1
, ∂ B

∂x2
are constant on the extremals if and only if

±εm′(u) + m(u) = f ′(u) (4)

(here + corresponds to the right tangents and − to the left ones). The function B is locally concave if and only if ±m′′(u) � 0.

The next statement treats the subdomain Ωcup (see Fig. 2) foliated by the extremals with the two endpoints on the
lower bound.

Proposition 2.4. Let B be linear on extremals in Ωcup and let the boundary condition (1) be satisfied for it. Then its first derivatives
∂ B
∂x1

, ∂ B
∂x2

are constant along the extremals if and only if

f ′(a) + f ′(b)

2
= 〈

f ′〉
[a,b] ,

where (a,a2) and (b,b2) are the endpoints of the extremals. The concavity of B can also be rewritten as differential inequalities:
f ′′(a) � 〈 f ′′〉[a,b] and f ′′(b) � 〈 f ′′〉[a,b] .

It turns out that subdomains foliated by such extremals can be found near the points where f ′′′ changes its sign from +
to − only. We call such subdomains cups.

In the case when a subdomain of linearity borders two subdomains of tangents oriented in a different way, an angle
arises (see Fig. 3). The continuity and the concavity of the glued function are equivalent to the following equation:

lim
u→v+m′′(u) + lim

u→v−m′′(u) = 0,

where the point (v, v2) is the vertex of the angle.
The same equations arise when a subdomain of linearity glues with a cup and two subdomains foliated by tangents of

the same direction (see Fig. 4). We call such construction trolleybuses.
The next theorem was proved in the paper [1].

Theorem 2.5. Under the assumptions of Theorem 2.2, there exists a collection of cups, angles, trolleybuses, and subdomains foliated by
tangents such that all the corresponding equations and inequalities are fulfilled.
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Fig. 3. An angle Ωang lying between ΩR and ΩL .

Fig. 3. Un angle Ωang entre ΩR et ΩL .

Fig. 4. A right Ωtr,R and a left Ωtr,L trolleybuses.

Fig. 4. Un trolleybus droit Ωtr,R et un trolleybus gauche Ωtr,L .

A short algorithm for finding such a collection for ε fixed is provided as the proof of that theorem. The function B can
be recovered by the foliation easily. Inside the cups it can be found by using linearity on the extremals. In the subdomains
of tangents one needs to solve the differential equations (4) on the function m, and B can be recovered by (3). In the
subdomains of linearity (trolleybuses or angles) B can be recovered by linearity.

Details of these constructions and proofs can be found in [1].
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