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Abstract. We consider an operator A ε on L2(R
d1 × T

d2) (d1 is positive, while d2 can be zero)
given by A ε = − divA(ε−1x1, x2)∇, where A is periodic in the first variable and smooth in a sense
in the second. We present approximations for (A ε − μ)−1 and ∇(A ε − μ)−1 (with appropriate μ)
in the operator norm when ε is small. We also provide estimates for the rates of approximation
that are sharp with respect to the order.
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1. Problem setting. The present paper is concerned with the study of homogenization prob-
lems for operators whose coefficients are periodic only in some directions. Let d1 > 0 be the number
of “periodic” directions and d2 � 0 be the number of “nonperiodic” directions; we denote their sum
by d. We set Ξ = R

d1×Ω2, where Ω2 = T
d2 is the flat torus (R/Z)d2 . Let Λ be a lattice in R

d1 with
basic cell Ω1 . We use Λ∗ and Ω∗

1 to denote the dual lattice and the Brillouin zone, respectively. It
is convenient for us here to view Λ as acting on Ξ, so that Ω = Ω1 × Ω2 is a fundamental domain
for Λ.

We set D = −i∇x . We also introduce the notation D1 =
(−i∇x1

0

)
and D2 =

( 0
−i∇x2

)
. Suppose

that A is a periodic (with respect to the lattice) matrix-valued function in Lip(Ω2;L∞(Ω1))
d×d . As-

sume also that the real part of A is uniformly positive definite. We consider the strictly m-sectorial
operator Aε

μ on L2(Ξ) associated with the form

aε
μ[u] = (AεDu,Du)L2(Ξ) − μ(u, u)L2(Ξ), μ ∈ C, ε > 0, (1)

defined for all u in the Sobolev space H1(Ξ). Here and henceforward, if f is a function on Ξ, then
the symbol f ε stands for the mapping f ε(x) = f(ε−1x1, x2).

The coefficients of Aε
μ rapidly oscillate along the periodic directions when ε becomes small. Our

goal is to study the behavior of (Aε
μ)

−1 as ε goes to 0. We show that (Aε
μ)

−1 and D2(A
ε
μ)

−1 converge
in the operator norm and prove sharp-order estimates for the rates of convergence. Moreover, we
find an approximation for D1(A

ε
μ)

−1 and obtain a more accurate approximation for (Aε
μ)

−1 with

error of order ε2 .
Such problems have already been studied, e.g., in [3] and [5]. However, the results of these papers

are related to operators subject to fairly strong restrictions (in particular, the matrix A must be
Hermitian and have block-diagonal structure), which cannot be relaxed within the framework of
approaches used there. In this paper we present a relatively simple approach that does not have
this flaw. At the same time, this approach makes it possible to not only generalize the previous
results but also obtain other, more subtle, results. Namely, our method gives, in addition to the
convergence results, a more accurate approximation for non-self-adjoint operators in the operator
norm on L2 , involving a corrector. Earlier, such results were obtained only by a spectral approach
and only for purely periodic operators on the entire space (see [1], [2], and [6]).

We dwelt on a problem with periodic boundary conditions and operators not containing lower-
order terms only to simplify the statements of results. A more general case, where the operator has
lower-order terms with multiplier coefficients, is investigated in [4].
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2. Main results. For our purposes, we will need an effective operator and two different correc-
tors. Let N be the C

1×d-valued periodic solution of the following auxiliary problem on the basic
cell:

D∗
1A( · , x2)(D1N( · , x2) + I) = 0,

∫

Ω1

N( · , x2) dx1 = 0.

Then the effective operator A0
μ is the strictly m-sectorial operator given by

A0
μ = D∗A0D− μ, (2)

where

A0(x2) = |Ω1|−1

∫

Ω1

A(y1, x2)(D1N(y1, x2) + I) dy1.

Note that the function A0 is Lipschitz continuous and its real part is uniformly positive definite,
so that the domain of the effective operator coincides with the Sobolev space H2(Ξ).

It is easy to see that the spectra of A0
0 and Aε

0 are contained in a sector S ⊂ {z ∈ C : Re z > 0}.
Hence both Aε

μ and A0
μ have bounded inverses for any μ outside the sector. Our first result concerns

the convergence of (Aε
μ)

−1 and D2(A
ε
μ)

−1 .

Theorem 1. Let μ /∈ S . Then, for all ε ∈ (0, 1],

‖(Aε
μ)

−1 − (A0
μ)

−1‖B(L2(Ξ)) � C1ε, (3)

‖D2(A
ε
μ)

−1 −D2(A
0
μ)

−1‖B(L2(Ξ))d � C2ε. (4)

The estimates are sharp with respect to the order, and the constants C1 and C2 depend only on Λ,
μ, ‖A‖L∞ , ‖D2A‖L∞ , and ‖(ReA)−1‖L∞ .

We now turn to the definition of the correctors. The first one, Kε
μ , plays the role of the classical

corrector in homogenization theory and differs from the latter in that it involves a smoothing
operator Pε :

Kε
μ = N εD(A0

μ)
−1Pε. (5)

As Pε we take the pseudodifferential operator with symbol χε−1Ω∗
1
(χε−1Ω∗

1
being the characteristic

function of the set ε−1Ω∗
1):

Pε = F∗χε−1Ω∗
1
F,

where F is the partial Fourier transform in the variable x1 . In certain cases, Kε
μ can be replaced

by the classical corrector (see [4]).

Theorem 2. Let μ /∈ S . Then, for any ε ∈ (0, 1],

‖D1(A
ε
μ)

−1 −D1(A
0
μ)

−1 − εD1K
ε
μ‖B(L2(Ξ))d � C3ε. (6)

The estimate is sharp with respect to the order, and the constant C3 depends only on Λ, μ, ‖A‖L∞ ,
‖D2A‖L∞ , and ‖(ReA)−1‖L∞ .

Notice that, because of the rapidly oscillating function N ε , the norm of the corrector in
B(L2(Ξ),H

1(Ξ)) is of order ε−1 . It follows that we cannot generally eliminate Kε
μ from (6).

The second corrector, Cε
μ , appeared for the first time in [1] and has a rather complicated

structure. Let k ∈ R
d1 , and let k =

(k
0

)
be the corresponding element of R

d . We introduce two
families of operators:

A0
μ(k) = (k+D2)

∗A0(k+D2)− μ,

Kμ(k;x1) = N(x1, · ) (k+D2)(A
0
μ(k))

−1.

Let us denote the adjoint of Aε
μ by (Aε

μ)
+ . We construct the effective operator, the corrector, and

the families for (Aε
μ)

+ just as we did for Aε
μ (they will be marked with “+” as well). Let Lμ be

the pseudodifferential operator (in the variable x1) with symbol

k �→ Lμ(k) = |Ω1|−1

∫

Ω1

(Kμ(k; y1)
+)∗(k+D2)

∗A(y1, · ) ((k+D2)(A
0
μ(k))

−1 +Dy1Kμ(k; y1)) dy1.
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Then the corrector Cε
μ is defined by

Cε
μ = (Kε

μ −Lμ)P
ε +Pε((Kε

μ)
+ − (Lμ)

+)∗. (7)

We may as well express the operator Lμ in a different form, namely,

Lμ = (D((A0
μ)

+)−1)∗M(D(A0
μ)

−1),

where M is the pseudodifferential operator (in the variable x1) with symbol

k �→ M(k) = |Ω1|−1

∫

Ω1

(N(y1, · )+)∗(k+D2)
∗A(y1, · ) (I + (D1N)(y1, · )) dy1.

(It is easy to see that M is in fact a differential operator.) A similar definition was given in [1].

Theorem 3. Let μ /∈ S . Then, for any ε ∈ (0, 1],

‖(Aε
μ)

−1 − (A0
μ)

−1 − εCε
μ‖B(L2(Ξ)) � C4ε

2. (8)

The estimate is sharp with respect to the order, and the constant C4 depends only on Λ, μ, ‖A‖L∞ ,
‖D2A‖L∞ , and ‖(ReA)−1‖L∞ .

We remark that the smoothing Pε can always be dropped from (7); Theorem 3 will remain
true (see [4]).

3. The method. First, we note that it suffices to prove the theorems for only one μ /∈ S ;
the result for the remaining values of μ will then follow by using an appropriate identity for the
resolvents. It is convenient to choose μ with Reμ < 0, since, in this case, the operators are coercive.

As is customary in problems of this kind, we use a scaling transformation and the Gelfand
transform with respect to the first variable and reduce the problem to one on the fundamental
domain Ω of Λ.

Let τ = (k, ε) ∈ Ω∗
1 × (0, 1]. We introduce the notation D1(τ) = D1 + k, D2(τ) = εD2 ,

and D(τ) = D1(τ) +D2(τ) and define the form aμ(τ) by

aμ(τ)[u] = (AD(τ)u,D(τ)u)L2(Ω) − ε2μ(u, u)L2(Ω),

where u is any function in the Sobolev space H̃1(Ω) of periodic functions belonging to H1(Ω).
This form generates an m-sectorial operator on L2(Ω). We denote it by Aμ(τ). The relationship
between Aε

μ and Aμ(τ) is rather simple: it can be proved that ε2Aε
μ is unitarily equivalent to a

decomposable operator on
∫ ⊕
Ω∗

1
L2(Ω) dk, whose fibers turn out to be Aμ(τ); that is,

ε2Aε
μ 	

∫ ⊕

Ω∗
1

Aμ(τ) dk.

The fibers A0
μ(τ) of the decomposable operator that is unitarily equivalent to ε2A0

μ are defined
likewise. Next, let

Kμ(τ) = ND(τ)(A0
μ(τ))

−1P1,

where P1 is averaging over Ω1 . Then

ε−1Kε
μ 	

∫ ⊕

Ω∗
1

Kμ(τ) dk.

Finally, if

Lμ(τ) = (Kμ(τ)
+)∗(D(τ)−D1)

∗A((D(τ) −D1)(A
0
μ(τ))

−1 +D1Kμ(τ)),

then

ε−1Cε
μ 	

∫ ⊕

Ω∗
1

Cμ(τ) dk,

where Cμ(τ) is given by

Cμ(τ) = (Kμ(τ)−Lμ(τ))P1 +P1(Kμ(τ)
+ −Lμ(τ)

+)∗.
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Now we can rewrite Theorems 1–3 in terms of the corresponding fibers.

Theorem 1*. For any τ ∈ Ω∗
1 × (0, 1],

‖(Aμ(τ))
−1 − (A0

μ(τ))
−1‖B(L2(Ω)) � C1|τ |−1, (9)

‖D2(τ)(Aμ(τ))
−1 −D2(τ)(A

0
μ(τ))

−1‖B(L2(Ω))d � C2. (10)

Theorem 2*. For any τ ∈ Ω∗
1 × (0, 1],

‖D1(τ)(Aμ(τ))
−1 −D1(τ)(A

0
μ(τ))

−1 −D1(τ)Kμ(τ)‖B(L2(Ω))d � C3. (11)

Theorem 3*. For any τ ∈ Ω∗
1 × (0, 1],

‖(Aμ(τ))
−1 − (A0

μ(τ))
−1 −Cμ(τ)‖B(L2(Ω)) � C4. (12)

Let us briefly sketch the key ideas of the proof. The starting point is the relation

(Aμ(τ))
−1P1 − (A0

μ(τ))
−1P1 −Kμ(τ)

= −(Aμ(τ))
−1P⊥

1 (D(τ)−D1)
∗A((D(τ)−D1)(A

0
μ(τ))

−1P1 +D1Kμ(τ))

+ ε2μ(Aμ(τ))
−1Kμ(τ)− (D(τ)(Aμ(τ)

+)−1)∗A(D(τ)−D1)Kμ(τ), (13)

which is a consequence of the resolvent identity and the definitions of A0 and N . We begin with
Theorem 2*:

‖D1(τ)(Aμ(τ))
−1 −D1(τ)(A

0
μ(τ))

−1 −D1(τ)Kμ(τ)‖B(L2(Ω))d

� ‖D1(τ)(Aμ(τ))
−1P1 −D1(τ)(A

0
μ(τ))

−1P1 −D1(τ)Kμ(τ)‖B(L2(Ω))d

+ ‖D1(τ)(Aμ(τ))
−1P⊥

1 ‖B(L2(Ω))d + ‖D1(τ)(A
0
μ(τ))

−1P⊥
1 ‖B(L2(Ω))d .

Recall that the coefficients A and A0 are Lipschitz continuous in the second variable and that the
parameter μ was chosen in such a way that Aμ(τ) and A0

μ(τ) are coercive; hence the estimates on

(Aμ(τ))
−1 and (A0

μ(τ))
−1 , as well as on the compositions of these operators with D1(τ) and D2(τ).

This, together with the fact that N is a Sobolev multiplier, gives the necessary estimates for Kμ(τ)
and the compositions of Kμ(τ) with D1(τ) and D2(τ). Finally, all these estimates obviously carry
over to the adjoint of Aμ(τ) and the related operators. Using identity (13) and applying the results
mentioned above to the terms on the right-hand side, we obtain (11).

The estimates (9) and (10) of Theorem 1* are proved in the same way; we need only observe
that Kμ(τ) and D2(τ)Kμ(τ) can now be absorbed into the error terms.

As for (12), we note that, according to the definition of Cμ(τ), the operator under the norm
sign can be written as the sum of the three terms

T1 = (P⊥
1 (Aμ(τ)

+)−1 −P⊥
1 (A

0
μ(τ)

+)−1 −P⊥
1 Kμ(τ)

+)∗,

T2 = (Aμ(τ))
−1P1 − (A0

μ(τ))
−1P1 −Kμ(τ),

T3 = Lμ(τ)P1 + (Lμ(τ)
+P1)

∗.

The first one is estimated by employing the Poincaré inequality and an analogue of Theorem 2*
for A0

μ(τ)
+ . Next, we use identity (13) for T2 and then combine the terms in the sum of T2 and T3

so as to single out the operators

P⊥
1 (Aμ(τ)

+)−1 −P⊥
1 (A

0
μ(τ)

+)−1 −P⊥
1 Kμ(τ)

+,

D(τ)(Aμ(τ)
+)−1 −D(τ)(A0

μ(τ)
+)−1 −D(τ)Kμ(τ)

+.

We apply analogues of Theorems 1* and 2* again to each term containing one of these opera-
tors. Thanks to Lμ(τ) and Lμ(τ)

+ in the corrector fiber Cμ(τ), the remaining terms present no
difficulties and can be handled by the same arguments as in the proofs of Theorems 1* and 2*.
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