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Abstract

In early 80’s Vadim Kaimanovich presented a construction of a non-
degenerate measure, on the standard lamplighter group, that has a trivial
left and non-trivial right random walk tail boundary. We show that ex-
amples of such kind are possible precisely for amenable groups that have
non-trivial factors with ICC property.

1 Introduction

Let G be a countable group and v be a probability measure on G. A measure
on G is called non-degenerate if its support generates G as a semigroup. The
v-random walk on G is defined in the following way. First let (X;)$2, be the

ii.d. process with distribution v. We set Z; = X5 -...- X;. Process (Z;) is
called the right v-random walk on G. Similarly, we can define the left ran-
dom walk by setting Z, = X; - ...- X;1. By default, random walk will mean

right random walk. We will restrict ourselves to non-degenerate measures on
groups. If v is a measure on a countable group G, we may define an opposite
measure v~ ! by v71(g) = v(g~1). It is trivial to see that instead of left random
walks, we may consider right random walks with opposite measures. The tail
boundary or the tail subalgebra of random walk (Z;) is defined as the intersec-
tion ﬂj 0(Zj,Zj41,...), where 0(Z;,Zj11,...) denotes the minimal o-algebra
under which all variables Z;, Z;;1, ... are measurable. Pair (G,v) (or, abusing
notation, measure v itself) is called Liouville if the tail boundary of v-random
walk on G is trivial. One of the fundamental questions of asymptotic theory
of random walks is whether a measure on a group is Liouville. Another notion
of boundary is that of the Poisson boundary, it is defined as the invariant-set
subalgebra of the process (Z;);cy under the time-shift action; in the setting of
the random walk on group with non-degenerate measure, the Poisson Bound-
ary coincides with the tail boundary (see [KaVe83|, [Ka92]), so we will will
use these notions interchangeably. Due to the Kaimanovich-Vershik entropy
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criterion for boundary triviality [KaVe83], we have that if a measure v on G
has finite Shannon entropy (defined by H(v) = —3_ . v(g) logv(g), assuming
0log0 = 0), then left and right v-random walks have trivial tail boundaries si-
multaneously. Surprisingly, this is not the case if the finite entropy assumption
is waived: in [Ka83] Kaimanovich constructed an example of a measure on the
standard lamplighter group Z/2Z7Z such that the left random walk has trivial
tail boundary, while the right random walk has non-trivial. The purpose of the
present note is to explore which countable groups admit examples akin to that
of Kaimanovich. Our main result is the following:

Theorem 1. Let G be a countable group. There is a non-degenerate probability
measure v on G with trivial left and non-trivial right random walk tail boundaries
iff G is amenable and has a non-trivial ICC factor-group.

We remind that a group is called an ICC (short for infinite conjugacy classes)
if conjugacy class of each nontrivial element of the group is non-trivial. Note
that a finitely-generated group lacks an ICC factor exactly when it is virtually-
nilpotent (=has polynomial growth, due to the famous Gromov theorem), see
[DuM56], [M56].

We note that using more subtle techniques from [ErKal9], one can prove
that the boundary is not only non-trivial, but the action of any ICC factor-
group on the corresponding factor-boundary could be made to be essentially
free. In this note we only show that the boundary is non-trivial.

It is well known that amenable groups and only them admit non-degenerate
Liouville measures, see Theorems 4.2 and 4.3 from [KaVe83]). It is also well
known that all measures on groups without ICC factors are Liouville, see [Ja],
a self-contained proof could be also found in the second preprint version of
[Fetal9]. Thus examples of Kaimanovich type are possible only for amenable
groups with non-trivial ICC factors. In the sequel we will show that for every
such group there is a measure of full support with non-trivial left and trivial right
random walk boundary. Our construction is based on that of the breakthrough
paper [Fetal9] of Frish, Hartman, Tamuz and Vahidi Ferdowsi, where a non-
Liouville measure was constructed for every group with an ICC factor, combined
with the classic construction of a Liouville measure for every amenable group
by Kaimanovich and Vershik [KaVe83] and Rosenblatt [Ro81], although in the
proof of non-triviality of boundary we employ the approach similar to that of
Ershler and Kaimanovich [ErKal9).
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2 A process with heavy tail

Let K be a random variable such that P(K = k) = (1/¢)k=%/%, for k € N.
Consider an i.i.d. process (K;);en (each K; has the same distribution as K). A
number ¢ € N is a record-time if K; > K for all j < ¢, and the value (XK;) is
a record-value; we will call pair (i, K;) a record, and usually denote it, abusing
notation a bit, as K;. A record is simple if K; > K; for all j < <.

The following lemma could be found in [Fetal9, Lemma 2.6] and [ErKal9)
Sections 2.B and 2.C].

Lemma 1. For almost every realization of the random process (K;), there is ig
such that

1. for alli > ig we have max{Ky,...K;} > i;
2. all record-times starting from ig are simple.

We have a random variable K, let us construct coupled random variable
Y. If K = ko, we set Y = ‘red* with probability 27% and Y = ‘blue‘ with
probability 1 — 2o,

Now consider the process (K;,Y;)2, such that pairs (K;,Y;) form an i.i.d.

Consider a trajectory of the random process (K;,Y;);en. We will say that
this trajectory stabilizes if there is g such that

1. for all ¢ > iy we have max{Kj,...K;} > i;

2. all record-times i starting from ig are simple and Y; =’ blue’ for these
record-times.

We will call the smallest such ig (if it exists) the stabilization time. Now it is
easy to extend the previous lemma in the following way using the Borel-Cantelli
lemma:

Lemma 2. Almost every realization of the random process (K;,Y;):en stabilizes.

3 Construction

Let G be a group, and A be a subset of G. We will say that a finite subset F’
of G is (A, d)-invariant if |[aF' \ F| < §|F| for all a € A.

Let H be a group. Let A be a finite subset of H. We will say that an element
b is an A-lock if for any af,aj,ay,ay from A, equality a)bay, = afbay implies
ay = af and a), = af, and sets A and AbA are disjoint.

The proof of the following for amenable groups could be found in [Fetal9,
Proposition 2.5] and in the general case in [ErKal9, Poposition 4.25].

Lemma 3. If ' is an ICC group, then for every finite subset A of T there is
an A-lock.



Let G be a group, and let ¢ be a canonical epimorphism onto an ICC group
I'. Let (¢;) be any sequence enumerating all the elements of G.

We will construct the measure v for the main theorem as a distribution of a
certain random variable X coupled with (K,Y).

We will construct the variable in an iterative manner, together with sets A;,
F;, D; and a sequence b; for each 7 € N.

Let Ay = {e}. For each i > 1 we choose F; to be ((A;U{c;}U{c; '}, 1/4)
- invariant. We denote D; = F; ' UF; U A; U {¢;} U {c; '}, for i € N. For each
i > 1 we choose b; to be such that ¢(b;) is a p(D;*"')-lock. For each i € N
we set Ai+1 = Dl U biﬂil U Eb;l

We are ready to construct a random variable X that is coupled to (K,Y).
Assume K =i. If Y = “red”’, we set X = ¢;. Otherwise let X be uniformly
distributed in b; F} L

So let v be the distribution of X. It is trivial that the support of v is G.
The following proposition appears as a part of Theorem 4.2 from [KaVe83|:

Proposition 1. Let v be a non-degenerate measure on a countable group G.
The Poisson boundary of v-random walk on G is trivial iff for every g € G we
have ||g * V*™ — v*"|| — 0.
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Lemma 4. v~ - random walk on G has trivial Poisson boundary.

Proof. Let g be fixed. Assuming that n is big enough, the sequence K1, ..., K,
with probability close to 1 has unique maximal value, and the corresponding
Y; = “blue’; this is a trivial consequence of Lemma[2l So we have that (v—1)*"
could be decomposed as

W= > paarm @ F Am by s
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where ¢/, ¢" € A7, m > n, py ¢r.m > 0, Ap,, is the uniform measure on Fy,,
and ||n,| — 0 as n — co. From this we readily conclude that ||(v~1)*" — g *
(v=H*"|| < 4/n + 4||n,||, as soon as g € A, so the assumption of Lemma [l is

fulfilled. O

Now we will show that the tail boundary is nontrivial. For this we will
construct a tail-measurable function and show that its image is nontrivial.

Denote W,, = @(A"b,F,'A") for all n € N. Let p : J, W, — T be
a function defined by the formula p(¢'o(b,f)q”) = ¢, where ¢',q" € A,
f € p(F;1). Note that p is defined properly since by construction ¢(b,,) is
a (D} %) lock. Note that for any w € W, if p(w) belongs to |J, W, then
p(w) € W, for some m < n, since p(w) € A and W, is disjoint from A"
for any m > n by the construction of b,. For any w € T' we define t(w) as
the (possibly empty) set of all p(w), p(p(w)), p(p(p(w))) that lie in v € J, W;.
Let (K;,Y:, X;)ien be the process described above. We can make the follow-
ing simple observation: if i < j are bigger than the stabilization time, then
p(p(Z;)) C p(p(Z;)), This is easy to prove for ¢ and i + 1 (either i + 1 is a
new record-time , and then p(¢(Z;11)) = ¢(Z;), or it is not a new record-time,



and then p(p(Zis1)) = p(o(Z0)); either way we get Hp(Z)) C t(p(Zis1)).
Also, if i1 is at least the second record-time after the stabilization time, then
©(Zi—1) € t(p(Z;)). We conclude that for almost every realization of the process
(K, Yi, Xi)ien, the limit lim; o0 t(¢(Z;)) exists and is equal to ;s t((Z:)).
We define this limit 7(w). It is trivial that 7 is a tail-measurable random vari-
able. Let us collect our observations concerning 7.

Lemma 5. 1. 7 is tail-measurable;
2. tc U, Wa;
3. TN Wy, has at most one element for any n € N;

4. if i1 is at least the second record-time after the stabilization time, then
o(Zi-1) € T(p(Z:));

5. if the trajectory of the process stabilizes, then there is ng, such that T N
Unsn, Wa contains ezxactly elements of the form p(Z;—1), where i runs
through all the record-time bigger than the stabilization time, except for
the first one.

The purpose of ours is now to prove that the distribution of the random
variable 7 is not concentrated on one point. Denote Q = (Nx {‘red’, ‘blue’} x G)N
the space of trajectories of the random process (K, Y;, X;)iinN, and

ZE = (N x {‘red’, ‘blue’} x G)N x N,

the space of trajectories augmented by values of the stabilization times. Both
) and = are endowed with probability measures and are naturally isomorphic.

Take any point &y from the support of the measure on = and such that the
statement of Lemma [2] holds for the corresponding realization of the random
process (K;,Y;,Z;). For big enough m there are (at least) two 71,72 such
that P(p(X) = m1|K < m) > 0 and P(p(X) = 1|K < m) > 0. We fix
the realization wg of the random process that corresponds to . Let i¢ be the
stabilization time for that realization. Let i1 be a record-time that is bigger than
the stabilization time and such that the corresponding record-value k;, is bigger
than m; let i be the next record-time. By the previous lemma, ¢(Z;,_1) € 7.
Consider the neighbourhood of &, defined by constraints that X; = x;, K; =
ki, Y; = y; for all i = 1...i2 — 1 and that the stabilization time is not bigger
than 7;. Denote S the projection of this neighbourhood into 2. Note that
S has positive measure. By construction of m, there are kf,y},«} such that
o(x]) # p(x1), k1 <m and that P(K = k1,Y =y}, X = z}) > 0. We define a
map T : A — Q that changes the first triple (k1,y1,z1) to (k7, v}, x}):

T(kluy17x17k27y27x27k37y37x37' ) = ( i7y17$117k27y27$27k37y37$37' )

This map preserves measure up to a positive multiplicative constant, so T'(.5)
has positive measure. Also, for every w € T(S) we have that the stabiliza-
tion time is at most i;. We also note that for every w € S, 7(w) N W,;, =



{p(z1(wo)z2(wo) - .. Tiy—1(wo)) }, and for every w € T'(S), we have 7(w) NW;, =
{o(@)x2(wp) ... zi—1(wo))}, so the distribution of 7 is not concentrated on one
point, since sets of values 7(S) and 7(7'(S)) are disjoint.
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