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a b s t r a c t

A systematic boundary-layer approach is for the first time applied to diffraction of
a high-frequency plane wave by a contour with a jump of curvature. Assuming that
the incident wave is non-tangent, we present a detailed description of the outgoing
wavefield within a boundary layer surrounding the point of non-smoothness of the
contour. This allows us to describe the wavefield within a transition zone surrounding
the limit ray in terms of the parabolic cylinder function D−3 which has not been
previously encountered in high-frequency diffraction problems.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The structure of high-frequency wavefields in diffraction problems is described by the Geometrical Theory of Diffraction
(GTD) clearly articulated by J.B. Keller [1]. Crude versions of GTD present a wavefield as a sum of contributions of rays
reflected from smooth parts of the boundary and rays associated with diffraction from points of its non-smoothness.
Formulas for diffracted waves should be found in the course of consideration of related simple model problems typically
allowing separation of variables. The problem of diffraction by a contour with a jump of curvature has for a long time
attracted attention of researchers (see, e.g., [2–8]) not only by its possible applications, but also (and mainly) because no
simple model problem to describe diffraction by such a singularity is available. So far, a treatment of this problem has
been based on the Kirchhoff method (see, e.g., [9]), which consists essentially in application the Green formula where
the values of wavefields and their normal derivatives on the contour are formally replaced by leading-order terms of ray
expressions.

The pioneering investigation of high-frequency diffraction by a jump of curvature was undertaken by A. V. Popov [2]
who addressed a plane wave incident along a planar (straight) boundary (with the Neumann condition), passing
into a parabola at its apex. Later, several problems with tangential incidence were explored by N. Ya. Kirpichnikova,
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Fig. 1. Rays of diffracted and incident waves and boundary layers.

A. S. Kirpichnikova and V. B. Philippov [3–5]. They addressed diffraction of creeping and whispering gallery waves on
a curved boundary with a jump in curvature, for either Dirichlet or Neumann boundary conditions. This analysis was
generalized to an elastic media [5]. In the paper by L. Kaminetsky and J. B. Keller [6], diffraction was investigated in the
case of a non-tangent incidence on a curvilinear boundary with an isolated point at which a curvature or its derivative
jumps. For a variety of boundary conditions they derived expressions for the diffracted wave; however, they did not
discuss the wavefield in the immediate proximity to the direction of specular reflection. A non-stationary approach to
high-frequency diffraction by a contour with a jump of curvature, similar to the Kirchhoff method, has been developed (for
ideal boundary conditions) by A. F. Filippov [7]. A. P. Kiselev and Z.M. Rogoff in [8] described a specific effect of impedance
on outgoing wavefield. In all above research, expressions were found for a diffracted cylindrical wave, which agree with
each other in the sense that their diffraction coefficients have third-order poles on the limit ray.

The aforementioned crude GTD, providing ray formulas for diffracted waves, fails in small vicinities of points of non-
smoothness of the boundary and in narrow transition zones (such as penumbras) where phases of reflected and diffracted
waves merge and the waves lose their individuality. J. B. Keller and R.N. Buchal [10] first pointed to the importance of
describing wavefields in transition zones by the boundary layer approach. An extensive account of employment of the
boundary layer techniques in high-frequency diffraction problems was given by V.M. Babic̆ and N. Ya. Kirpic̆nikova [11].
However, to the best of our knowledge, the boundary-layer techniques has never been systematically applied to diffraction
by a jump of curvature, as we believe, because of arising analytical difficulties.

In the present paper, we apply the boundary layer approach (see, e.g., [11]) to high-frequency diffraction by a contour
with a jump of curvature. First, we study the wavefield in a small neighborhood of the point of non-smoothness of the
contour. We introduce there stretched coordinates and explicitly solve related non-standard singular boundary-value
problems describing the ‘‘local’’ wavefield. On this basis, we find the respective ‘‘far-field’’ asymptotics of the ‘‘local’’
wavefield in the area where the distance from the singular point ρ is small1 but kρ → ∞, with k standing for the
wavenumber. The procedure allows an expression for diffracted wave, which agrees with earlier known results [2–8].

We use a kind of boundary layer description of the wavefield around the specularly reflected, or limit, ray. Matching it
with an expression for wavefield near the singular point allows a representation of the wavefield in terms of the parabolic
cylinder function D−3 which has not been earlier encountered in diffraction theory.

2. Formulation of problem

We assume the harmonic time dependence e−iωt , where t is time, ω is circular frequency related to wavenumber k
by ω/c = k, and c = const is wave speed. We put c = 1. Total wavefield u = ui

+ uo, where ui and uo are incident and
outgoing wavefields,2 respectively, is governed by the Helmholtz equation

∆u + k2u = 0, (1)

where ∆ = ∂2/∂x2 + ∂2/∂y2 is the Laplacian and we assume that the wavenumber k is large:

k → ∞. (2)

The wavefield u is considered in an infinite domain bounded by a contour C of which the curvature æ is smooth except
for a point O where it has a jump (see Fig. 1). We parameterize C by its arc length s measured from O (see Fig. 3) and
assume that its curvature æ = æ(s) has the following form:

æ(s) = g(s) + hH(s). (3)

Here, g(s) is a smooth function, g(0) = æ0, h is the magnitude of jump, and H(s) is the Heaviside function

H(s) =

{
0, if s < 0;
1, if s ≥ 0.

(4)

1 To be precise, we compare ρ with a certain geometrical parameter specified in (5).
2 Henceforth the outgoing wave satisfies the limiting absorption principle, which will be discussed in more detail in Section 4.
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Fig. 2. Reflection from a smooth contour.

No assumption about the convexity of the contour C is made. Accordingly, æ(s) may be of any sign.
In order to non-dimensionalize subsequent relations, we introduce a characteristic geometrical parameter of the

problem under consideration:

~ = max{|æ0|, |æ0 + h|}. (5)

We assume that on the contour C the Dirichlet boundary condition holds, that is

uo
⏐⏐
C = − ui

⏐⏐
C . (6)

Let the incident wave be a plane wave ui
= eik(x cosβ−y sinβ), where x and y are Cartesian coordinates with the origin at O

and x-axis tangent to C , β is the grazing angle (see Fig. 1). We assume the incidence to be non-tangent, that is, β > ε > 0
with ε fixed and independent of k.

It is convenient to introduce linear functions P±(x, y), which will be useful in description of the wavefield:

P±(x, y) = x cosβ ± y sinβ. (7)

Thus, the incident wave is

ui
= eikP

−(x,y). (8)

The function P+ is associated with phase of an outgoing plane wave.
The outgoing wavefield uo satisfies the Helmholtz equation (1) and the boundary condition (6). According to the crude

GTD (see, e.g., [1]), at some distance from the limit (specularly reflected) ray uo is a sum of ur, the wave specularly reflected
from smooth parts of the contour, and ud, the diffracted wave:

uo
= ur

+ ud. (9)

The latter is a cylindrical wave (see, e.g, [6])

ud
= A(φ, k)

eikρ
√
kρ
(1 + o (1)) , kρ → ∞. (10)

Here, A(φ, k) is a diffraction coefficient and ρ and φ are classical polar coordinates centered at O:

x = ρ cosφ, y = ρ sinφ, −π < φ ≤ π. (11)

For a plane wave incidence onto a smooth contour, asymptotics of reflected wave ur is described by the well-known
ray formula (see, e.g., [12])

ur
= −

(
1 +

2æl
sinB

)−
1
2

eikτ
(
1 + O

(
1
kρ

))
, kρ → ∞. (12)

Here, τ = τ (M) stands for the value of eikonal at the observation point M , l is the distance from the respective point of
specular reflection R to the point M , B is the grazing angle at R, and the value æ of curvature is taken at the point R (see
Fig. 2).

In the case of a jump of curvature at O, expression (12) jumps at the limit ray. Therefore, a description of wavefield in
its neighborhood requires a special consideration which we present in Section 5. Also, formula (12) shows that close to
the point O a rough approximation for the reflected wave is

ur
≈ wr

= −eikP
+(x,y). (13)

In Appendix A a more detailed approximation taking into account the curvature is derived

ur
≈ wr

+ vr
(
1 + O(~ρ) + O

(
k~ρ2(φ − β)2

))
, (14)
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Fig. 3. Coordinates s and n.

where

vr = (æ0 + hH(β − φ))
(

y
sin2 β

− ik
(x sinβ − y cosβ)2

sinβ

)
eikP

+(x,y). (15)

It can be seen from (14) and (15) that |vr| ≪ |wr
| in the area where

~ρ ≪ 1, (16)

and

k~ρ2(φ − β)2 ≪ 1. (17)

Conditions (16) and (17) hold true under the assumption

k~ρ2
≪ 1. (18)

It will be observed that the inequality (18) characterizes the size of a boundary layer surrounding point O (see Section 3),
whereas condition (17) characterizes the width of the transition zone surrounding the limit ray (see Section 5).

In what follows, the wavefield will be investigated by the boundary layer approach in two areas: in a small
neighborhood of point O and in the vicinity of the limit ray (gray-filled and gray-crosshatched in Fig. 1, respectively).
Our consideration will be confined to the area described by inequality (16).

3. Boundary layer equations near point O

3.1. Coordinate systems

We describe the position of a point of observation M close to O with the help of orthogonal coordinates s and n, where
n is the length of segment of perpendicular dropped from M onto the contour C (see Fig. 3). For point M positioned above
the contour n ≥ 0.

It is well known (see, e.g., [13]) that the Cartesian coordinates of the point M can be represented as follows

x = X(s) − n sinψ, y = Y (s) + n cosψ. (19)

Here, ψ is angle between the tangent to the contour C and positive direction of x-axis, −π < ψ ≤ π , and the contour C
is parametrically described by formulas

X(s) =

∫ s

0
cosψ(s)ds, Y (s) =

∫ s

0
sinψ(s)ds. (20)

The angle ψ is related to the curvature for s ̸= 0 as follows

æ(s) = −
dψ(s)
ds

. (21)

Thus, for small s we have

ψ(s) = −

∫ s

0
æ(s)ds = − (æ0s + hs+) (1 + o(1)) , (22)

where

sλ
+

= sλH(s), s+ := s1
+
, (23)
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and H is the Heaviside function (4). Employing Eqs. (19) and (20) we obtain⎧⎨⎩
x = s + æ0 ns + hns+ + o

(
~
(
n2

+ s2
))
,

y = n −
æ0s2

2
−

hs2
+

2
+ o

(
~
(
n2

+ s2
))
.

(24)

In a small neighborhood of the point O we introduce the standard stretched coordinates S and N (see, e.g., [14,15])

S = ks, N = kn (25)

and expand the Cartesian coordinates x and y in inverse powers of the large parameter k:⎧⎪⎪⎨⎪⎪⎩
x =

S
k

+
æ0NS
k2

+
hNS+

k2
+ o

(
~(S2 + N2)

k2

)
,

y =
N
k

−
æ0S2

2k2
−

hS2
+

2k2
+ o

(
~(S2 + N2)

k2

)
.

(26)

3.2. Incident wave in stretched coordinates

With the help of (26), the phases of incident and outgoing plane waves (7) become

kP±(x, y) = k(x cosβ ± y sinβ)

= P±(S,N) +
1
k

[
æ0

(
∓

sinβ
2

S2 + cosβ NS
)

+h
(

∓
sinβ
2

S2
+

+ cosβ NS+

)]
+ o

(
~(S2 + N2)

k

)
, k → ∞. (27)

Notice that

P±(S,N) = kP±(s, n). (28)

Now, the incident wave ui in the vicinity of the point O is represented as follows:

ui
= eikP

−(x,y)
= ui

0 +
1
k

(
æ0ui

1 + huih
1

)
+ · · · , k → ∞, (29)

where the functions

ui
0 = eiP

−(S,N), ui
1 = i

(
sinβ
2

S2 + cosβ NS
)
eiP

−(S,N), uih
1 = i

(
sinβ
2

S2
+

+ cosβ NS+

)
eiP

−(S,N) (30)

are independent of h.
The asymptotics for the reflected wave ur (14) has a similar form:

ur
= wr

0 +
1
k

(
æ0(wr

1 + vr1) + h(wrh
1 + vrh1 )

)
+ · · · , k → ∞, (31)

with

wr
0 = −eiP

+(S,N), wr
1 = i

(
sinβ
2

S2 − cosβ NS
)
eiP

+(S,N), wrh
1 = i

(
sinβ
2

S2
+

− cosβ NS+

)
eiP

+(S,N), (32)

vr1 =

(
N

sin2 β
− i

(S sinβ − N cosβ)2

sinβ

)
eiP

+(S,N),

vrh1 = H(S sinβ − N cosβ)
(

N
sin2 β

− i
(S sinβ − N cosβ)2

sinβ

)
eiP

+(S,N).

(33)

3.3. Helmholtz equation in stretched coordinates

In coordinates s and n the Helmholtz operator can be written as (see, e.g., [13]):

∆+ k2 =
1

1 + næ
∂

∂s

(
1

1 + næ
∂

∂s

)
+

1
1 + næ

∂

∂n

(
(1 + næ)

∂

∂n

)
+ k2. (34)

Expanding the right-hand side of formula (34) in powers of n and passing to the coordinates S and N , we get

∆+ k2 = k2
(
L0 +

1
k

(
æ0L1 + hLh1

)
+ · · ·

)
, k → ∞, (35)
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where we introduce notations:

L0 =
∂2

∂N2 +
∂2

∂S2
+ 1, L1 = −2N

∂2

∂S2
+

∂

∂N
, Lh1 = −2NH(S)

∂2

∂S2
+ H(S)

∂

∂N
− Nδ(S)

∂

∂S
. (36)

Here, H is the Heaviside function (4) and δ is the Dirac delta function.

3.4. Boundary value problems in stretched coordinates

We seek the solution of the boundary value problem (1), (6) in the form

uo
= Uo

0 +
1
k

(
æ0Uo

1 + hUoh
1

)
+ · · · , k → ∞. (37)

Aiming at asymptotic description of the effect of a curvature jump on the outgoing wavefield, we address solely the term
linear in h. Substituting (37) into (1) and (6) and equating to zero coefficients of powers of k, we arrive at boundary value
problems{

L0Uo
0 = 0, (a)

Uo
0

⏐⏐
N=0 = − ui

0

⏐⏐
N=0 , (b)

(38)

and {
L0Uoh

1 + Lh1U
o
0 = 0, (a)

Uoh
1

⏐⏐
N=0 = − uih

1

⏐⏐
N=0 . (b)

(39)

Here, operators L0 and Lh1 are introduced in (36). We are seeking outgoing solutions of (38) and (39), i.e., solutions which
satisfy the limiting absorption principle.3 We are not interested in the function Uo

1 , because it does not describe the effect
of a jump of curvature. This function solves the problem obtained from (39) via replacement Lh1 and uih

1 by L1 and ui
1,

respectively. It can be shown that Uo
1 matches with wr

1 + vr1 (see (32) and (33)), which analysis we omit.

4. Investigation of term linear in h

Using formulas (30), we immediately find the solution of boundary value problem (38)

Uo
0 = −eiP

+(S,N), (40)

which is the leading-order term of reflected wave wr
0 (see (32)). With the help of (30), (39) and (40) we come up with

the boundary value problem for Uoh
1 :⎧⎨⎩

(
∂2

∂S2
+

∂2

∂N2 + 1
)
Uoh
1 =

(
(i sinβ + 2 cos2 β N)H(S) − i cosβ Nδ(S)

)
eiP

+(S,N), (a)

Uoh
1

⏐⏐
N=0 = −

i sinβ
2 S2

+
eiS cosβ . (b)

(41)

We assume that Uoh
1 satisfies the limiting absorption principle.

It is easily verified that Uoh
1 can be presented in the form

Uoh
1 = W + V , (42)

where functions W and V are solutions of the following boundary value problems:⎧⎨⎩
(
∂2

∂S2
+

∂2

∂N2 + 1
)
W =

(
(i sinβ + 2 cos2 β N)H(S) − i cosβ Nδ(S)

)
eiP

+(S,N), (a)

W |N=0 =
i sinβ

2 S2
+
eiS cosβ , (b)

(43)

and ⎧⎨⎩
(
∂2

∂S2
+

∂2

∂N2 + 1
)
V = 0, (a)

V |N=0 = −i sinβ S2
+
eiS cosβ . (b)

(44)

The limiting absorption principle guarantees uniqueness of solutions of problems (43) and (44).
Decomposition (42) is convenient for the following reasons. First, the solution of the problem (43) is easily found in

elementary functions, while the problem (44) is far more complicated. Second, W matches with reflected wave, whereas
V describes diffracted wavefield.

3 Replacing 1 with 1 + iϵ in the expression for L0 (see (36)), we replace (39) by a problem having an unique solution decreasing at infinity.
Passing to a limit as ϵ → 0 (see, e.g., [16]), we obtain unique solution of (39).
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Fig. 4. Integration contour in (52).

4.1. Function W

Solution of (43) is very simple:

W = i
(
sinβ
2

S2
+

− cosβ NS+

)
eiP

+(S,N). (45)

This expression coincides with wrh
1 (see (32)), whence the function W matches with the specularly reflected wave and is

therefore of little interest.

4.2. Function V

We seek a solution of boundary value problem (44) in the form of Fourier integral

V (S,N) =
1
2π

∫
∞

−∞

µ(σ ,N) eiσSdσ (46)

with unknown density µ(σ ,N). The Fourier transform F
[
S2
+
eiS cosβ

]
(σ ) of the function S2

+
eiS cosβ is given by

F
[
S2
+
eiS cosβ

]
(σ ) = F

[
S2
+

]
(σ − cosβ) = 2i(σ − cosβ − i0)−3, (47)

see [17]. From (44) it ensues that µ(σ ,N) satisfies the ordinary differential equation(
∂2

∂N2 + 1 − σ 2
)
µ = 0 (48)

and the boundary condition

µ|N=0 = 2 sinβ (σ − cosβ − i0)−3. (49)

The problem (48), (49) has two linearly independent solutions:

µ = 2 sinβ (σ − cosβ − i0)−3 e±iN
√

1−σ2
. (50)

We take square root positive as −1 < σ < 1 with branch cuts shown in Fig. 4 by wavy lines. To satisfy the limiting
absorption principle, we choose the function (50) with a plus sign in the exponent. We regularize the integral (46) by a
deformation of contour of integration into the one shown in Fig. 4 (ℜσ is the real part of σ ). In a neighborhood of point
O we introduce coordinates r and ϕ related to s and n by

s = r cosϕ, n = r sinϕ, −π < ϕ ≤ π, (51)

and come up with:

V =
sinβ
π

∫
γ

eikr
(√

1−σ2 sinϕ+σ cosϕ
)

(σ − cosβ)3
dσ . (52)

We assume that inequality (16) holds, whence r ≈ ρ =

√
x2 + y2. For

kr → ∞, (53)

standard asymptotic techniques (see, e.g., [18]) allows us to describe the function V by a sum of contributions of the pole
σ = cosβ and the critical point of phase σ = cosϕ. Hereafter we assume that the condition (53) holds true.
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Fig. 5. Integration contour in (52) as cosβ > cosϕ.

Fig. 6. Integration contour in (52) as cosβ < cosϕ.

4.2.1. Critical point of phase is not too close to pole
Let the observation point be positioned not too close to the limit ray and, accordingly, the critical point of phase be

so far from the pole that asymptotics of (52) can be found by application of the standard method of steepest descent
(see, e.g., [18]). As we will see later, this is guaranteed by condition

√
kr|ϕ − β| ≫ 1, (54)

which is compatible with (16) and (17). The integration contour (see Fig. 4) is deformed into a one tangent to the steepest
descent line (see, e.g., [18]) at the point σ = cosϕ, where its slope equals to 3π/4. In the case where cosβ > cosϕ, the
pole does not give a contribution to the integral (52), see Fig. 5. In the opposite case where cosβ < cosϕ, see Fig. 6, it
does. We find the contribution of this third-order pole by the standard theory of residues (see, e.g., [19]).

Thus, asymptotics of the function hV/k which has a clear physical interpretation as an additive part of the wavefield,
becomes

hV
k

= hH(β − ϕ)
(

n
sin2 β

− ik
(s sinβ − n cosβ)2

sinβ

)
eikP

+(s,n)

+Ã(ϕ, k)
eikr
√
kr

[
1 + O

(
1

kr(ϕ − β)2

)]
, kr → ∞, (55)

where

Ã(ϕ, k) =

√
2
π

h sinϕ sinβ
k (cosϕ − cosβ)3

e−i π4 . (56)

The first term on the right-hand side of (55) comes from the pole and matches with the function vrh1 describing the
specularly reflected wavefield (see (33)). The second comes from the critical point of phase and describes the diffracted
wave ud. Under the condition (54) the correction terms in (55) are small.

4.2.2. Matching (55) with (10)
Now we match the second term on the right-hand side of (55) with the cylindrical wave ud (10) under condition (54).

Relations (11), (24), (51) imply that r = ρ + O
(
~ρ2

)
, whence eikr = eikρ

(
1 + O

(
k~ρ2

))
. Thus, the size of the boundary

layer surrounding the point O is characterized by inequality (18).
Comparing (10) and (55) we obtain that A(φ, k) = Ã(φ, k) (see (56)) and arrive at the following expression for the

diffracted wave ud:

ud
= Ã(φ, k)

eikρ
√
kρ

(
1 + O

(
1

kρ(φ − β)2

))
. (57)

The correction term is small, provided that the condition√
kρ|φ − β| ≫ 1, (58)

(cf. (54)) is satisfied. The formula (57) perfectly agrees with results obtained earlier in [6,7] by Kirchhoff-type approaches.

4.2.3. Critical point of phase is close to pole
Consider the case where the condition (54) does not hold and derivation of the asymptotics of (52) requires a

modification of the steepest-descent method. Let the observation point be positioned in the vicinity of the limit ray.
Assume that

(kr)
1
3 |ϕ − β| ≪ 1. (59)
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The importance of the condition (59) is discussed in Appendix C. In a small neighborhood of the critical point of phase
we introduce an integration variable σ = cosϕ + ζ sinϕ, |ζ | ≪ 1. Following Erdélyi (see, e.g., [18]), we take a quadratic
approximation for the phase in (52) and extend the integration contour from the neighborhood of the critical point of
phase to infinity:

hV
k

=
h sinβ
πk

∫
γ

eik
(
n
√

1−σ2+sσ
)

(σ − cosβ)3
dσ ≈

h
πk sinβ

eikr
∫

e−
ikr
2 ζ2

(ζ − (ϕ − β))3
dζ . (60)

Expression (60) can be easily written in terms of the parabolic cylinder function D−3 (see Appendix B):

hV
k

≈

√
2
π

hr
sinβ

eikr−i z
2
2 D−3

(√
2 ze−i π4

)
. (61)

Here, we introduce the variable

z =

√
kr
2

(ϕ − β), (62)

which routinely arise in description of transition zones (typically, z2 is the difference between phases of a plane and a
cylindrical waves, see [9]). With the help of relation (see [20]) between D−3 and the Fresnel integral

F (Z) =
e−i π4
√
π

∫ Z

−∞

eip
2
dp, (63)

formula (61) can be rewritten as

hV
k

≈
ihr

2 sinβ
eikr

d2

dz2

[
(1 − F (z)) e−iz2

]
. (64)

4.2.4. Matching (61) with (55)
We will demonstrate that as both conditions (54) and (59) hold, expressions (55) and (61) asymptotically coincide.

Indeed, using the asymptotics of the parabolic cylinder function D−3 (see (B.3) and (B.4)) and substituting the formula for
z (62) in the expression (61) we obtain that as z → ±∞

hv
k

≈ −
hr

sinβ

(
2iz2H(−z)eikr−iz2

+
eikr−i π4

2
√
π z3

)

= −ikh
r2(ϕ − β)2

sinβ
H(β − ϕ)e

ikr
(
1− (ϕ−β)2

2

)
+

√
2
π

he−i π4

k sinβ (β − ϕ)3
eikr
√
kr
. (65)

It is easy to see that the leading-order terms of (55) and of (65) coincide.

5. Neighborhood of limit ray

In current section we introduce to our analysis a certain family of exact solutions of the Helmholtz equation, suitable
for description the merging of diffracted and reflected waves.

5.1. Tsepelev’s exact solutions of the Helmholtz equation

Let x′ and y′ be Cartesian coordinates with the origin at the point O and x′-axis directed along the specularly reflected
ray (see Fig. 7). It is convenient to use classical parabolic coordinates ξ and η (see, e.g., [21]):

x′
=

1
2

(
ξ 2 − η2

)
, y′

= ξη. (66)

In a small neighborhood of the limit ray, coordinate lines of ξ are approximately parallel and those of η are approximately
orthogonal to it. The Helmholtz equation in parabolic coordinates ξ and η reads (see, e.g., [21])(

∂2

∂ξ 2
+
∂2

∂η2
+ k2

(
ξ 2 + η2

))
U(ξ, η) = 0. (67)

Separation of variables allows a solution of (67):

U(ξ, η) = CD
−

1−q
2

(√
2k ξe−i π4

)
D

−
1+q
2

(√
2k ηe−i π4

)
, (68)

where Dν is a parabolic cylinder function, C is arbitrary constant and q is separation parameter.
The family (68) was introduced by N. V. Tsepelev in the paper [22] aiming at description of wavefields near limit rays

where waves of various nature merge.
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Fig. 7. System of coordinates x′ and y′ .

5.2. Matching (68) with (61) within boundary layer surrounding O

Now we match the solution of the Helmholtz equation (68) with expression (61) in the area described by (18) under
an additional condition (59) which is satisfied in the vicinity of the limit ray. Here coordinates ξ and η (see (66)) are
related to r and z (see (51) and (62)) by

ξ 2 = 2r(1 + o(1)), z =
√
k η (1 + o (1)) . (69)

Comparing (61) and (68) we put q = 5 and (68) becomes

U(ξ, η) = CD2

(√
2k ξe−i π4

)
D−3

(√
2k ηe−i π4

)
. (70)

Substitution of the asymptotics of D2 (see (B.3)) into (70) and using relations (69) give

U = −4iCkr eikr−i z
2
2 D−3

(√
2 ze−i π4

)
(1 + o(1)) , kr → ∞. (71)

Comparison of (71) and (61) shows that asymptotic coincidence of these formulas requires that

C =
ih

2
√
2π k sinβ

. (72)

5.3. Matching (70) with outgoing wavefield beyond boundary layer surrounding O

Now consider the area in the vicinity of the limit ray where condition (18) does not hold. Assume that
√
k ξ ≫ 1 and√

k η ≫ 1, i.e., inequalities kρ ≫ 1 (cf. (53)) and (58) are satisfied. In a neighborhood of the limit ray where |φ − β| ≪ 1,
we rewrite (70) in terms of polar coordinates ρ and φ (see (11), (66)) with the help of (B.3) and (B.4), and come up with

U =

(
−ikh

ρ2(φ − β)2

sinβ
H(β − φ)eikP

+(x,y)
+

√
2
π

he−i π4

k sinβ (β − φ)3
eikρ
√
kρ

)

×

[
1 + O

(
(β − φ)2

)
+ O

(
1

kρ(φ − β)2

)]
. (73)

It can be observed that under conditions (16) and (17) the first term in round brackets matches with the reflected wave
(see (13), (14), and (15)) and the second term with the diffracted wave (see (57) and (56)).

To summarize, the expression (70) with the constant C given by (72) describes the effect of jump of curvature on the
outgoing wavefield in a narrow neighborhood (characterized by inequalities (16) and (17)) of the limit ray, where the
phases of diffracted and reflected waves merge.

6. Conclusions

We have succeeded in application of a systematic boundary layer approach to high-frequency diffraction by a contour
with a jump of curvature. We first described a wavefield in a neighborhood of the point of discontinuity, characterized
by inequality (18). We presented an expression for a wavefield in the vicinity of the limit ray in terms of the parabolic
cylinder function D−3, which is valid under conditions (16) and (17). We developed techniques applicable to diffraction
by a boundary or interface with curvature having higher order discontinuities, including the cases of point-source and
tangent incidence.
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Fig. A.8. Reflection from a smooth part of contour.
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Appendix A. Derivation of expressions (13), (14), and (15) for reflected wave

Denote the distance between the observation point M = (x, y) and the respective reflection point R = (X, Y ) by l. It is
obvious that l = (x − X) cos γ + (y − Y ) sin γ (see Fig. A.8). The value of eikonal τ (X, Y ) at the point R is related to the
phase of incident wave (8) as follows: τ (X, Y ) = P−(X, Y ) = X cosβ − Y sinβ (see (27)). Thus, the value of eikonal at the
point M is

τ (x, y) = τ (X, Y ) + l = (x − X) cos γ + (y − Y ) sin γ + X cosβ − Y sinβ. (A.1)

The law of specular reflection reads

β + ψ = γ − ψ, (A.2)

(see Fig. A.8). It is obvious from (A.2) that tan(β + 2ψ) = tan γ , which is equivalent to a helpful relation

tanβ + tan(2ψ)
1 − tanβ tan(2ψ)

=
y − Y
x − X

. (A.3)

Now assume that R is close to O. It follows from (20) and (22) that

X = s + O
(
~2s3

)
, Y = −

æ0s2

2
−

hs2
+

2
+ O

(
~2s3

)
, (A.4)

where s is the arc length relevant to the point R. Employing the smallness of s and relations (A.4) and (22), we find
from (A.3)

s =
x sinβ − y cosβ

sinβ
(1 + O(~ρ)). (A.5)

With the help of (A.2) and (22) the eikonal (A.1) can be rewritten as follows:

τ (x, y) = (x − X) cos(β + 2ψ) + (y − Y ) sin(β + 2ψ) + X cosβ − Y sinβ
= x cosβ + y sinβ − 2 (æ0s + hs+) (y cosβ − x sinβ) −

(
æ0s2 + hs2

+

)
sinβ + O

(
~2ρ3) . (A.6)

Finally, applying (A.5) gives

τ (x, y) = x cosβ + y sinβ + (æ0 + hH(β − φ))
(y cosβ − x sinβ)2

sinβ
+ O

(
~2ρ3) . (A.7)

Expansion of the exponent in (12) up to quadratic terms and the amplitude up to linear terms allows formulas (13), (14),
and (15).

Appendix B. Parabolic cylinder functions

Parabolic cylinder functions Dν(ζ ) are defined as solutions of differential equation

d2Dν
dZ2 +

(
ν +

1
2

−
Z2

4

)
Dν = 0 (B.1)
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satisfying conditions Dν(0) =
√
π 2

ν
2

Γ

(
1−ν
2

) , D′
ν(0) = −

√
π 2

ν+1
2

Γ (−ν
2 )

(see, e.g. [20]). For integer values of ν function Dν(Z) has

the following integral representation (see, e.g., [23])

Dν(Z) =
ei(ν+1)π

√
2π i

e
Z2
4

∫
−Θ−i∞

−Θ+i∞
eZp+

1
2 p

2
pνdp, (B.2)

where Θ > 0. For large values of |Z | and a fixed value of ν asymptotic expansion of Dν is

Dν(Z) = Zνe−
Z2
4

(
1 + O

(
1

|Z |
2

))
, (B.3)

as −3π/4 < arg Z < 3π/4, and

Dν(Z) =

(
Zνe−

Z2
4 −

√
2π

Γ (−ν)
eiνπZ−ν−1e

Z2
4

)(
1 + O

(
1

|Z |
2

))
, (B.4)

as π/4 < arg Z < 5π/4 (see, e.g., [20]).

Appendix C. Correction terms in (61)

We are going to consider the calculation of Section 4.2.3 in more detail. In formula (60) we substitute the expansion
of phase

ikr
(√

1 − σ 2 sinϕ + σ cosϕ
)

= ikr
(
1 −

1
2
ζ 2
)

+ O
(
krζ 3

)
(C.1)

and a relation sinϕ = sinβ(1 + O(ϕ − β)):

hv
k

=
h

πk sinβ
eikr

∫ (
1 + O(ϕ − β) + O

(
krζ 3

))
e−

ikr
2 ζ2

(ζ − (ϕ − β))3
dζ . (C.2)

Remind that the condition (53) is assumed. Passing to integration variable ζ̃ =
√
kr(ζ − (ϕ − β)) gives

hv
k

=
hr

π sinβ
eikr−ikr (ϕ−β)2

2

∫
e−i

√
kr(ϕ−β )̃ζ− i

2 ζ̃
2

ζ̃ 3

(
1 + O(ϕ − β) + O

(
(̃ζ +

√
kr(ϕ − β))3
√
kr

))
d̃ζ . (C.3)

Introduce a notation for small parameter ϑ = (kr)
1
3 (ϕ − β) (see (59)). In terms of ϑ and kr we obtain

1
ζ̃ 3

(
1 + O(ϕ − β) + O

(
(̃ζ +

√
kr(ϕ − β))3
√
kr

))

=
1
ζ̃ 3

(
1 + O

(
(kr)−

1
3 ϑ

)
+ O

(
(̃ζ + (kr)

1
6 ϑ)3

√
kr

))

=
1
ζ̃ 3

+ O
(
ϑ3) 1

ζ̃ 3
+ O

(
(kr)−

1
3 ϑ

)( 1
ζ̃ 3

+
1
ζ̃

)
+ O

(
(kr)−

1
6 ϑ2

) 1
ζ̃ 2

+ O
(

1
√
kr

)
. (C.4)

The integral in (C.3) is a sum of terms of orders O(1), O
(
ϑ3
)
, O
(
(kr)−

1
6 ϑ2

)
, O
(
(kr)−

1
3 ϑ

)
, and O

(
(kr)−

1
2

)
, respectively.

In the area where inequality (59) requiring that |ϑ | ≪ 1 holds, the relation (C.3) takes the form

hv
k

=

√
2
π

hr
sinβ

eikr−i z
2
2 D−3

(√
2 ze−i π4

)(
1 + O

(
ϑ3)

+ O
(

1
√
kr

))
, (C.5)

see (B.2), with z defined in (62).
We have shown that the correction terms in (C.5) are small under conditions (53) and (59).
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